202
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Magnetic dipolar modes in magnon-polariton condensates

Pages 1147-1172 | Received 10 May 2021, Accepted 08 Sep 2021, Published online: 29 Sep 2021

References

  • Kockum AF, Miranowicz A, De Liberato S, et al. Ultrastrong coupling between light and matter. Nat Rev Phys. 2019;1:19–40.
  • Basov DN, Asenjo-Garcia A, Schuck PJ, et al. Polariton panorama. Nanophotonics. 2020;10:549–577.
  • Bliokh KY, Bekshaev AY, Nori F. Optical momentum and angular momentum in complex media: from the Abraham–Minkowski debate to unusual properties of surface plasmon-polaritons. New J Phys. 2017;19:123014.
  • Alpeggiani F, Bliokh KY, Nori F, et al. Electromagnetic helicity in complex media. Phys Rev Lett. 2018;120:243605.
  • Crimin F, Mackinnon N, Götte JB, et al. Optical helicity and chirality: conservation and sources. Appl Sci. 2019;9:828.
  • Poulikakos LV, Dionne JA, García-Etxarri A. Optical helicity and optical chirality in free space and in the presence of matter. Symmetry. 2019;11:1113.
  • Bliokh KY, Kivshar YS, Nori F. Magnetoelectric effects in local light–matter interactions. Phys Rev Lett. 2014;113:033601.
  • Martín-Ruiz A, Cambiaso M, Urrutia LF. The magnetoelectric coupling in electrodynamics. Int J Modern Phys A. 2019;34:1941002.
  • Weisbuch C, Nishioka M, Ishikawa A, et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys Rev Lett. 1992;69:3314–3317.
  • Kasprzak J, Richard M, Kundermann S, et al. Bose–Einstein condensation of exciton polaritons. Nature. 2006;443:409–414.
  • Deng H, Haug H, Yamamoto Y. Exciton-polariton Bose-Einstein condensation. Rev Mod Phys. 2010;82:1489–1537.
  • Snoke D, Littlewood P. Polariton condensates. Phys Today. 2010;63:42–47.
  • Byrnes T, Kim NY, Yamamoto Y. Exciton–polariton condensates. Nat Phys. 2014;10:803–813.
  • Laussy FP, Glazov MM, Kavokin A, et al. Statistics of excitons in quantum dots and their effect on the optical emission spectra of microcavities. Phys Rev B. 2006;73:115343.
  • Soukal ÖO, Flatté ME. Strong field interactions between a nanomagnet and a photonic cavity. Phys Rev Lett. 2010;104:077202, Size dependence of strong coupling between nanomagnets and photonic cavities. Phys Rev B. 2010;82:104413.
  • Zhang X, Zou CL, Jiang L, et al. Strongly coupled magnons and cavity microwave photons. Phys Rev Lett. 2014;113:156401.
  • Tabuchi Y, Ishino S, Ishikawa T, et al. Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys Rev Lett. 2014;113:083603.
  • Goryachev M, Farr WG, Creedon DL, et al. High-cooperativity cavity QED with magnons at microwave frequencies. Phys Rev Appl. 2014;2:054002.
  • Haigh JA, Lambert NJ, Doherty AC, et al. Dispersive readout of ferromagnetic resonance for strongly coupled magnons and microwave photons. Phys Rev B. 2015;91:104410.
  • Zhang D, Wang X-M, Li T-F, et al. Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere. Npj Quant Inform. 2015;1:15014.
  • Lambert NJ, Haigh JA, Ferguson AJ. Identification of spin wave modes in yttrium iron garnet strongly coupled to a co-axial cavity. J Appl Phys. 2015;117:053910.
  • Leo A, Grazia Monteduro A, Rizzato S, et al. Identification and time-resolved study of ferrimagnetic spin-wave modes in a microwave cavity in the strong-coupling regime. Phys Rev B. 2020;101:014439.
  • Cao Y, Yan P, Huebl H, et al. Exchange magnon-polaritons in microwave cavities. Phys Rev B. 2015;91:094423.
  • Zare Rameshti B, Cao Y, Bauer GEW. Magnetic spheres in microwave cavities. Phys Rev B. 2015;91:214430.
  • Harder M, Hu C-M. Cavity spintronics: an early review of recent progress in the study of magnon–photon level repulsion. Solid State Phys. 2018;69:47–121.
  • Macêdo R, Holland RC, Baity PG, et al. Electromagnetic approach to cavity spintronics. Phys Rev Appl. 2021;15:024065.
  • Demokritov SO, Demidov VE, Dzyapko O, et al. Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature. 2006;443:430–433.
  • Bozhko DA, Clausen P, Chumak AV, et al. Formation of Bose–Einstein magnon condensate via dipolar and exchange thermalization channels. Low Temp Phys. 2015;41:801–805.
  • Skarsvåg H, Holmqvist C, Brataas A. Spin superfluidity and long-range transport in thin-film ferromagnets. Phys Rev Lett. 2015;115:237201.
  • Lahaye T, Menotti C, Santos L, et al. The physics of dipolar bosonic quantum gases. Rep Prog Phys. 2009;72:126401.
  • Stamper-Kurn DM, Ueda M. Spinor Bose gases: symmetries, magnetism, and quantum dynamics. Rev Mod Phys. 2013;85:1191–1244.
  • Einstein A, de Haas WJ. Experimental proof of the existence of Ampère's molecular currents. Verh Dtsch Phys Ges. 1915;17:152.
  • Barnett SJ. Magnetization by rotation. Phys Rev. 1915;6:239–270.
  • Cooper NR, Wilkin NK, Gunn JMF. Quantum phases of vortices in rotating Bose-Einstein condensates. Phys Rev Lett. 2001;87:120405.
  • Paredes B, Zoller P, Cirac JI. Fermionizing a small gas of ultracold bosons. Phys Rev A. 2002;66:033609.
  • White RL, Solt IH, Jr. Multiple ferromagnetic resonance in ferrite spheres. Phys Rev. 1956;104:56–62.
  • Dillon JF, Jr. Magnetostatic modes in ferrimagnetic spheres. Phys Rev. 1958;112:59–63.
  • Dillon JF, Jr. Magnetostatic modes in disks and rods. J Appl Phys. 1960;31:1605–1614.
  • Yukawa T, Abe K. FMR spectrum of magnetostatic waves in a normally magnetized YIG disk. J Appl Phys. 1974;45:3146–3153.
  • Kamenetskii EO, Saha AK, Awai I. Interaction of magnetic-dipolar modes with microwave-cavity electromagnetic fields. Phys Lett A. 2004;332:303.
  • Eshbach JR. Spin-wave propagation and the magnetoelastic interaction in yttrium iron garnet. J Appl Phys. 1963;34:1298–1304.
  • Kamenetskii EO, Shavit R, Sigalov M. Mesoscopic quantized properties of magnetic-dipolar-mode oscillations in disk ferromagnetic particles. J Appl Phys. 2004;95:6986–6988.
  • Kamenetskii EO, Sigalov M, Shavit R. Quantum confinement of magnetic-dipolar oscillations in ferrite discs. J Phys: Condens Matter. 2005;17:2211–2231.
  • Kamenetskii EO. Energy eigenstates of magnetostatic waves and oscillations. Phys Rev E. 2001;63:066612.
  • Kamenetskii EO, Shavit R, Sigalov M. Quantum wells based on magnetic-dipolar-mode oscillations in disk ferromagnetic particles. Europhys Lett. 2003;64:730–736.
  • Kamenetskii EO. Vortices and chirality of magnetostatic modes in quasi-2D ferrite disc particles. J Phys A: Math Theor. 2007;40:6539–6559.
  • Kamenetskii EO, Joffe R, Shavit R. Microwave magnetoelectric fields and their role in the matter-field interaction. Phys Rev E. 2013;87:023201.
  • Kamenetskii EO. Quantization of magnetoelectric fields. J Modern Opt. 2019;66:909–928.
  • Kamenetskii EO. Quasistatic oscillations in subwavelength particles: can one observe energy eigenstates? Ann Phys (Berlin). 2019;531:1800496.
  • Kamenetskii EO. The anapole moments in disk-form MS-wave ferrite particles. Europhys Lett. 2004;65:269–275.
  • Kamenetskii EO. Helical-mode magnetostatic resonances in small ferrite particles and singular metamaterials. J Phys: Condens Matter. 2010;22:486005.
  • Joffe R, Kamenetskii EO, Shavit R. Azimuthally unidirectional transport of energy in magnetoelectric fields: topological Lenz’s effect. J Mod Opt. 2017;64:2316–2327.
  • Mikhlin SG. Variational methods in mathematical physics. New York: McMillan; 1964.
  • Naimark MA. Linear differential operators. New York: Frederick Ungar Publishing; 1967.
  • Walker LR. Magnetostatic modes in ferromagnetic resonance. Phys Rev. 1957;105:390–399.
  • Plumier R. Magnetostatic modes in a sphere and polarization current corrections. Physica. 1962;28:423–444.
  • Mills DL. Quantum theory of spin waves in finite samples. J Magn Magn Mater. 2006;306:16–23.
  • Streib S. The difference between angular momentum and pseudo angular momentum. Phys Rev B. 2021;103:L100409.
  • Jackson JD. Classical electrodynamics. 2nd ed. New York: Wiley; 1975.
  • Kamenetskii EO. Magnetoelectric near fields. In: Kamenetskii EO, editor. Chirality, magnetism, and magnetoelectricity: separate phenomena and joint effects in metamaterial structures. Springer Nature Switzerland; 2021. Chapter 19, Series in Topics in Applied Physics; p. 532–641.
  • Gurevich AG, Melkov GA. Magnetization oscillations and waves. New York: CRC Press; 1996.
  • Ballantine KE, Donegan JF, Eastham PR. There are many ways to spin a photon: half-quantization of a total optical angular momentum. Sci Adv. 2016;2:e1501748.
  • Kuleshov VM, Mur VD, Narozhny NB, et al. Topological phase and half-integer orbital angular momenta in circular quantum dots. Few-Body Syst. 2016;57:1103–1126.
  • Ohanian HC. What is spin? Am J Phys. 1986;54:500–505.
  • Kamenetskii EO, Sigalov M, Shavit R. Manipulating microwaves with magnetic-dipolar-mode vortices. Phys Rev A. 2010;81:053823.
  • Joffe R, Shavit R, Kamenetskii EO. Microwave magnetoelectric fields: an analytical study of topological characteristics. J Magn Magn Mater. 2015;392:6–21.
  • Aharonov Y, Casher A. Topological quantum effects for neutral particles. Phys Rev Lett. 1984;53:319–321.
  • Nakata K, van Hoogdalem KA, Simon P, et al. Josephson and persistent spin currents in Bose-Einstein condensates of magnons. Phys Rev B. 2014;90:144419.
  • Landau LD, Lifshitz EM. Electrodynamics of continuous media. 2nd ed. Oxford: Pergamon; 1984.
  • Fano RM, Chu LJ, Adler RB. Electromagnetic fields, energy, and forces. New York: Wiley; 1960.
  • Akhiezer AI, Bar’yakhtar VG, Peletminskii SV. Spin waves. Amsterdam: North-Holland; 1968.
  • Stancil DD. Theory of magnetostatic waves. New York: Springer; 1993.
  • Resta R. Macroscopic electric polarization as a geometric quantum phase. Eur Phys Lett. 1993;22:133–138.
  • King-Smith RD, Vanderbilt D. Theory of polarization of crystalline solids. Phys Rev B. 1993;47:1651–1654.
  • Resta R, Vanderbilt D. Theory of polarization: a modern approach. In: Ahn CH, Rabe KM, Triscone JM, editors. Physics of ferroelectrics: a modern perspective. Vol. 105, Topics in applied physics. Berlin: Springer; 2007. p. 31–68.
  • Berezin M, Kamenetskii EO, Shavit R. Topological-phase effects and path-dependent interference in microwave structures with magnetic-dipolar-mode ferrite particles. J Opt. 2012;14:125602.
  • Afanasiev G, Stepanovsky Y. The helicity of the free electromagnetic field and its physical meaning. IL Nuovo Cimento. 1996;109A:271–279.
  • Jafari A. Electromagnetic helicity in classical physics. arXiv:1908.07394.
  • Kamenetskii EO, Berezin M, Shavit R. Microwave magnetoelectric fields: helicities and reactive power flows. Appl Phys B. 2015;121:31–47.
  • Barash YS. Moment of van der Waals forces between anisotropic bodies. Radiophys Quantum Electron. 1978;21:1138–1143.
  • van Enk SJ. Casimir torque between dielectrics. Phys Rev A. 1995;52:2569–2575.
  • Munday JN, Iannuzzi D, Barash Y, et al. Torque on birefringent plates induced by quantum fluctuations. Phys Rev A. 2005;71:042102.
  • Somers DAT, Garrett JL, Palm KJ, et al. Measurement of the Casimir torque. Nature. 2018;564:386–389.
  • Antezza M, Chan HB, Guizal B, et al. Giant Casimir torque between rotated gratings and the θ=0 anomaly. Phys Rev Lett. 2020;124:013903.
  • Berezin M, Kamenetskii EO, Shavit R. Topological properties of microwave magnetoelectric fields. Phys Rev E. 2014;89:023207.
  • Tamburini F, Thidé B, Molina-Terriza G, et al. Twisting of light around rotating black holes. Nature Phys. 2011;7:195–197.
  • Denisov VI, Denisova IP, Sokolov VA. Using the concept of natural geometry in the nonlinear electrodynamics of the vacuum. Theor Math Phys. 2012;172:1321–1327.
  • Denisov VI, Shvilkin BN, Sokolov VA, et al. Pulsar radiation in post-Maxwellian vacuum nonlinear electrodynamics. Phys Rev D. 2016;94:045021.
  • Zel’dovich YB. Generation of waves by a rotating body. Zh Eksp Teor Fiz Lett. 1971;14:180.
  • Starobinskii AA, Churilov SM. Amplification of electromagnetic and gravitational waves scattered by a rotating ‘black hole’. Zh Eksp Teor Fiz. 1973;65:3.
  • Torres T, Patrick S, Coutant A, et al. Rotational superradiant scattering in a vortex flow. Nat Phys. 2017;13:833–836.
  • Wilczek F. Two applications of axion electrodynamics. Phys Rev Lett. 1987;58:1799–1802.
  • Visinelli L. Dual axion electrodynamics. arXiv:1111.2268, 2011.
  • Wilczek F. Particle physics and condensed matter: the saga continues. Phys Scr. 2016;T168:014003.
  • Vaisman G, Kamenetskii EO, Shavit R. Magnetic-dipolar-mode Fano resonances for microwave spectroscopy of high absorption matter. J Phys D: Appl Phys. 2015;48:115003.
  • Vaisman G, Elman E, Hollander E, et al. Fano resonance microwave spectroscopy of high absorption matter. Patent: US 9651504 B2. 2017.
  • De Liberato S. Virtual photons in the ground state of a dissipative system. Nat Commun. 2017;8:1465.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.