11
Views
0
CrossRef citations to date
0
Altmetric
Articles

Compressed sensing photoacoustic imaging based on the gradient projection Newton pursuit algorithm

, , &
Pages 955-971 | Received 30 Nov 2023, Accepted 14 May 2024, Published online: 18 Jun 2024

References

  • Wang LV, Gao L. Photoacoustic microscopy and computed tomography: from bench to bedside. Annu Rev Biomed Eng. 2014;16:155–185. doi: 10.1146/bioeng.2014.16.issue-1
  • Attia ABE, Balasundaram G, Moothanchery M, et al. A review of clinical photoacoustic imaging: current and future trends. Photoacoustics. 2019;16:100144. doi: 10.1016/j.pacs.2019.100144
  • Das D, Sharma A, Rajendran P, et al. Another decade of photoacoustic imaging. Phys Med Biol. 2021;66:05TR01. doi: 10.1088/1361-6560/abd669
  • Liu Y, Bhattarai P, Dai Z, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev. 2019;48:2053–2108. doi: 10.1039/C8CS00618K
  • Zhang M, Kim HS, Jin T, et al. Ultrasound-guided photoacoustic imaging for the selective detection of EGFR-expressing breast cancer and lymph node metastases. Biomed Opt Express. 2016;7:1920–1931. doi: 10.1364/BOE.7.001920
  • Lin L, Wang LV. The emerging role of photoacoustic imaging in clinical oncology. Nature Rev Clinical Oncology. 2022;19:365–384. doi: 10.1038/s41571-022-00615-3
  • Yang X, Chen Y-H, Xia F, et al. Photoacoustic imaging for monitoring of stroke diseases: A review. Photoacoustics. 2021;23:100287. doi: 10.1016/j.pacs.2021.100287
  • Yang Q, Yang L, Peng C, et al. Testicular torsion diagnosis and injury assessment using photoacoustic oxygenation imaging. Photoacoustics. 2023;31:100499. doi: 10.1016/j.pacs.2023.100499
  • Xu M, Wang LV. Universal back-projection algorithm for photoacoustic computed tomography. Phys Rev E. 2005;71:016706. doi: 10.1103/PhysRevE.71.016706
  • Wang T, Chen C, Shen K, et al. Streak artifact suppressed back projection for sparse-view photoacoustic computed tomography. Appl Opt. 2023;62:3917–3925. doi: 10.1364/AO.487957
  • Nguyen LV, Kunyansky LA. A dissipative time reversal technique for photoacoustic tomography in a cavity. SIAM J Imaging Sci. 2016;9:748–769. doi: 10.1137/15M1049683
  • Donoho DL. Compressed sensing. IEEE Trans Inf Theory. 2006;52:1289–1306. doi: 10.1109/TIT.2006.871582
  • Provost J, Lesage F. The application of compressed sensing for photo-acoustic tomography. IEEE Trans Med Imaging. 2008;28:585–594. doi: 10.1109/TMI.2008.2007825
  • Guo Z, Li C, Song L, et al. Compressed sensing in photoacoustic tomography in vivo. J Biomed Opt. 2010;15:021311. doi: 10.1117/1.3381187
  • Han Y, Ding L, Ben XLD, et al. Three-dimensional optoacoustic reconstruction using fast sparse representation. Opt Lett. 2017;42:979–982. doi: 10.1364/OL.42.000979
  • Ye JC, Han Y, Cha E. Deep convolutional framelets: A general deep learning framework for inverse problems. SIAM J Imaging Sci. 2018;11:991–1048. doi: 10.1137/17M1141771
  • Haber E, Ruthotto L. Stable architectures for deep neural networks. Inverse Probl. 2017;34:014004. doi: 10.1088/1361-6420/aa9a90
  • Ruthotto L, Haber E. Deep neural networks motivated by partial differential equations. J Math Imaging Vis. 2020;62:352–364. doi: 10.1007/s10851-019-00903-1
  • Lan H, Jiang D, Yang C, et al. Y-Net: hybrid deep learning image reconstruction for photoacoustic tomography in vivo. Photoacoustics. 2020;20:100197. doi: 10.1016/j.pacs.2020.100197
  • Zhang H, Hongyu L, Nyayapathi N, et al. A new deep learning network for mitigating limited-view and under-sampling artifacts in ring-shaped photoacoustic tomography. Comput Med Imaging Graph. 2020;84:101720. doi: 10.1016/j.compmedimag.2020.101720
  • Shahid H, Khalid A, Liu X, et al. A deep learning approach for the photoacoustic tomography recovery from undersampled measurements. Front Neurosci. 2021;15:598693. doi: 10.3389/fnins.2021.598693
  • Zhang X, Ma F, Zhang Y, et al. Sparse-sampling photoacoustic computed tomography: deep learning vs. compressed sensing. Biomed Signal Process Control. 2022;71:103233. doi: 10.1016/j.bspc.2021.103233
  • Yuan Z, Jiang H. Quantitative photoacoustic tomography: recovery of optical absorption coefficient maps of heterogeneous media. Appl Phys Lett. 2006;88:231101. doi: 10.1063/1.2209883.
  • Shaw CB, Prakash J, Pramanik M, et al. Least squares QR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography. J Biomed Opt. 2013;18:080501. doi: 10.1117/1.JBO.18.8.080501
  • Liu X, Peng D, Guo W, et al. Compressed sensing photoacoustic imaging based on fast alternating direction algorithm. J Biomed Imaging. 2012;2012:12.
  • Liang D, Zhang HF, Ying L. Compressed-sensing photoacoustic imaging based on random optical illumination. Int J Funct Inform Personal Med. 2009;2:394–406.
  • Prakash J, Sanny D, Kalva SK, et al. Fractional regularization to improve photoacoustic tomographic image reconstruction. IEEE Trans Med Imaging. 2018;38:1935–19470. doi: 10.1109/TMI.42
  • Betcke MM, Cox BT, Huynh N, et al. Acoustic wave field reconstruction from compressed measurements with application in photoacoustic tomography. IEEE Trans Comput Imaging. 2017;3:710–721. doi: 10.1109/TCI.6745852
  • Guo H, Hu Z, He X, et al. Non-convex sparse regularization approach framework for high multiple-source resolution in Cerenkov luminescence tomography. Opt Express. 2017;25:28068–28085. doi: 10.1364/OE.25.028068
  • Liu X, Kong X, Qiao L, et al. Efficient L1/2 regularization-based reconstruction for photoacoustic imaging using adaptively iterative thresholding algorithm. J Med Imaging Health Inform. 2020;10:1506–1514. doi: 10.1166/jmihi.2020.3075
  • He X, Meng H, He X, et al. Nonconvex laplacian manifold joint method for morphological reconstruction of fluorescence molecular tomography. Mol Imaging Biol. 2021;23:394–406. doi: 10.1007/s11307-020-01568-8
  • Zhang Y, Wang Y, Zhang C. Total variation based gradient descent algorithm for sparse-view photoacoustic image reconstruction. Ultrasonics. 2012;52:1046–1055. doi: 10.1016/j.ultras.2012.08.012
  • Dong Y, Görner T, Kunis S. An algorithm for total variation regularized photoacoustic imaging. Adv Comput Math. 2015;41:423–438. doi: 10.1007/s10444-014-9364-1
  • Gao M, Si G, Bai Y, et al. Graphics processing unit accelerating compressed sensing photoacoustic computed tomography with total variation. Appl Opt. 2020;59:712–719. doi: 10.1364/AO.378466
  • Blumensath T, Davies ME. Iterative thresholding for sparse approximations. J Fourier Anal Appl. 2008;14:629–654. doi: 10.1007/s00041-008-9035-z
  • Needell D, Tropp JA. CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Anal. 2009;26:301–321. doi: 10.1016/j.acha.2008.07.002
  • Blanchard JD, Tanner J, Wei K. Conjugate gradient iterative hard thresholding: observed noise stability for compressed sensing. IEEE Trans Signal Process. 2014;63:528–537. doi: 10.1109/TSP.2014.2379665
  • Pan L, Zhou S, Xiu N, et al. A convergent iterative hard thresholding for nonnegative sparsity optimization. Pacific J Optim. 2017;13:325–353.
  • Zhou S. Gradient projection Newton pursuit for sparsity constrained optimization. Appl Comput Harmon Anal. 2022;61:75–100. doi: 10.1016/j.acha.2022.06.002
  • Van Den Berg E, Friedlander MP. SPGL1: a solver for large-scale sparse reconstruction. 2007.
  • Afonso MV, Bioucas-Dias JM, Figueiredo MA. Fast image recovery using variable splitting and constrained optimization. IEEE Trans Image Process. 2010;19:2345–2356. doi: 10.1109/TIP.2010.2047910
  • Fuhry M, Reichel L. A new tikhonov regularization method. Numer Algorithms. 2012;59:433–445. doi: 10.1007/s11075-011-9498-x
  • Liu X, Dai S, Wang M, et al. Compressed sensing photoacoustic imaging reconstruction using elastic net approach. Mol Imaging. 2022;2022:7877049. doi: 10.1155/2022/7877049
  • Liu X, Zhang L, Zhang Y, et al. A comparative study of four total variational regularization reconstruction algorithms for sparse-view photoacoustic imaging. Comput Math Methods Med. 2021;2021:1–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.