2,687
Views
38
CrossRef citations to date
0
Altmetric
Research Article

Understanding the Greenhouse Effect by Embodiment – Analysing and Using Students' and Scientists' Conceptual Resources

&

References

  • Andersson, B., & Wallin, A. (2000). Students’ understanding of the greenhouse effect, the social consequences of reducing CO2 emissions and the problem of ozone layer depletion. Journal of Research in Science Teaching, 37(10), 1096–1111. doi: 10.1002/1098-2736(200012)37:10<1096::AID-TEA4>3.0.CO;2-8
  • Andersson, B., & Wallin, A. (2006). On developing content-oriented theories taking biological evolution as an example. International Journal of Science Education, 28(6), 673–695. doi: 10.1080/09500690500498385
  • Arrhenius, S. (1896). On the influence of carbonic acid in the air upon the temperature of the ground. Philosophical Magazine and Journal of Science, 41(5), 237–276. doi: 10.1080/14786449608620846
  • Aubusson, P. J., & Fogwill, S. (2006). Role play as analogical modelling in science. In P. J. Aubusson, A. G. Harrison, & S. M. Ritchie (Eds.), Metaphor and analogy in science education (pp. 93–104). Dordrecht: Springer.
  • Bord, R. J., Fisher, A., & O'Connor, R. E. (1998). Public perceptions of global warming: United States and internationational perspectives. Climate Research, 11, 75–84. doi: 10.3354/cr011075
  • Bostrom, A., Morgan, M. G., Fischhoff, B., & Read, D. (1994). What do people know about global climate change? 1. Metal models. Risk Analysis, 14(6), 959–970. doi: 10.1111/j.1539-6924.1994.tb00065.x
  • Boyes, E., & Stanisstreet, M. (1993). The greenhouse-effect—childrens perceptions of causes, consequences and cures. International Journal of Science Education, 15(5), 531–552. doi: 10.1080/0950069930150507
  • Cronin, M., Gonzalez, C., & Sterman, J. (2009). Why don't well-educated adults understand accumulation? A challenge to researchers, educators, and citizens. Organizational Behavior and Human Decision Processes, 108(1), 116–130. doi: 10.1016/j.obhdp.2008.03.003
  • Deutsche Meteorologische Gesellschaft (German Society for Meteorology [DMG]). (1999). Grundlagen des Treibhauseffektes [Principles of the greenhouse effect], Report of the German Association for Meteorology, Berlin, pp. 1–4.
  • Dove, J. (1996). Student teacher understanding of the greenhouse effect, ozone layer depletion and acid rain. Environmental Education Research, 2(1), 89–100. doi: 10.1080/1350462960020108
  • Duit, R., Gropengiesser, H., & Kattmann, U. (2005). Towards science education research that is relevant for improving practice: The model of educational reconstruction. In H. Fischer (Ed.), Developing standards in research on science education, the ESERA Summer School 2004 (pp. 1–9). London: Taylor & Francis Group.
  • Duit, R., Gropengießer, H., Kattmann, U., & Komorek, M. (2012). The model of educational reconstruction—a framework for improving teaching and learning science. In D. Jorde & J. Dillon (Eds.), Science education research and practice in Europe (pp. 13–38). Rotterdam: Sense Publishers.
  • Duit, R., & Treagust, D. (1998). Learning in science—from behaviourism towards social constructivism and beyond. In B. Fraser & K. Tobin (Eds.), International handbook of science education (Vol. 1, Part 1, pp. 3–25). Dordrecht: Kluwer Academic Publishers.
  • Duschl, R., Maeng, S., & Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education, 47(2), 123–182. doi: 10.1080/03057267.2011.604476
  • Ekborg, M., & Areskoug, M. (2006). How student teacher's understanding of the greenhouse effect develops during a teacher education programme. NorDiNa, 1(5), 17–29.
  • Gallese, V., & Lakoff, G. (2005). The brain's concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 21, 1–26.
  • Gropengießer, H. (2007). Theorie des erfahrungsbasierten Verstehens [Experientialism]. In D. Krüger & H. Vogt (Eds.), Theorien in der biologiedidaktischen Forschung (pp. 105–116). Berlin/Heidelberg: Springer.
  • Hansen, P. J.K. (2010). Knowledge about the greenhouse effect and the effects of the ozone layer among Norwegian pupils finishing compulsory education in 1989, 1993, and 2005—what now?. International Journal of Science Education, 32(3), 397–419. doi: 10.1080/09500690802600787
  • Houghton, J. (2002). Physics of the atmospheres. Cambridge: Cambridge University Press.
  • Intergovernmental Panel on Climate Change (IPCC). (2007). Climate change 2007: The physical science basis. Cambridge: Cambridge University Press.
  • Jeffries, H., Boyes, E., & Stanisstreet, M. (2001). Knowledge about the greenhouse effect: Have college students improved?. Research in Science & Technological Education, 19(2), 205–221. doi: 10.1080/02635140120087731
  • Johnson, M. (1987). The body in the mind—the bodily basis of meaning, imagination, and reason. Chicago: The University of Chicago Press.
  • Khalid, T. (2003). Pre-service high school teachers’ perceptions of three environmental phenomena. Environmental Education Research, 9(1), 35–50. doi: 10.1080/13504620303466
  • Koulaidis, V., & Christidou, V. (1999). Models of students’ thinking concerning the greenhouse effect and teaching implications. Science Education, 83(5), 559–576. doi: 10.1002/(SICI)1098-237X(199909)83:5<559::AID-SCE4>3.0.CO;2-E
  • Lakoff, G. (1990). Women, fire, and dangerous things: What categories reveal about the mind. Chicago: The University of Chicago Press.64
  • Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago: The University of Chicago Press.56
  • Longino, H. (1990). Science as social knowledge. Princeton: Princeton University Press.
  • Mason, L., & Santi, M. (1998). Discussing the greenhouse effect: Children's collaborative discourse reasoning and conceptual change. Environmental Education Research, 4(1), 67–85. doi: 10.1080/1350462980040105
  • Mayring, P. (2002). Qualitative content analysis—research instrument or mode of interpretation?. In M. Kiegelmann (Ed.), The role of the researcher in qualitative psychology (pp. 139–148). Tuebingen: UTB.
  • Niebert, K. (2010). Den Klimawandel verstehen. Eine Didaktische Rekonstruktion der globalen Erwärmung [Understanding climate change. An educational reconstruction of global warming]. Oldenburg: Didaktisches Zentrum Oldenburg (diz).
  • Niebert, K., Marsch, S., & Treagust, D. (2012). Understanding needs embodiment: A theory-guided reanalysis of the role of metaphors and analogies in understanding science. Science Education, 96(5), 849–877. doi: 10.1002/sce.21026
  • Niebert, K., Riemeier, T., & Gropengiesser, H. (2013). The hidden hand that shapes conceptual understanding: Choosing effective representations for teaching cell division and climate change. In C.Y. Tsui & D. Treagust (Eds.), Multiple representations in biological education, Models and Modeling in Science Education (Vol. 7, pp. 210–229). New York: Springer. doi: 10.1007/978-94-007-4192-8_16.
  • Núñez, R. E., Edwards, L. D., & Matos, F. J. (1999). Embodied cognition as grounding for situatedness and context in mathematics education. Educational Studies in Mathematics, 39(1), 45–65. doi: 10.1023/A:1003759711966
  • Papadimitriou, V. (2004). Prospective primary teachers’ understanding of climate change, greenhouse effect, and ozone layer depletion. Journal of Science Education and Technology, 13(2), 299–307. doi: 10.1023/B:JOST.0000031268.72848.6d
  • Pruneau, D., Liboiron, L., Vrain, E., Biosphère, L., Gravel, H., Bourque, W., & Langis, J. (2001). People's ideas about climate change: A source of inspiration for the creation of educational programs. Canadian Journal of Environmental Education (CJEE), 6(1), 121–138.
  • Read, D., Bostrom, A., Morgan, M. G., Fischhoff, B., & Smuts, T. (1994). What do people know about global climate change? 2. Survey studies of educated laypeople. Risk Analysis, 14(6), 971–982. doi: 10.1111/j.1539-6924.1994.tb00066.x
  • Riemeier, T., & Gropengiesser, H. (2008). On the roots of difficulties in learning about cell division: Process-based analysis of students’ conceptual development in teaching experiments. International Journal of Science Education, 30(7), 923–939. doi: 10.1080/09500690701294716
  • Rohrer, T. (2001, July). Understanding through the body: fMRI and ERP investigations into the neurophysiology of cognitive semantics. Paper presented at the 7th International Cognitive Linguistics Association, University of Carlifornia at Santa Barbara, CA.
  • Rohrer, T. (2005). Image schemata in the brain. In B. Hampe & J. Grady (Eds.), From perception to meaning: Images schemas in cognitive linguistics (pp. 165–196). Berlin: Mouton de Gruyter.
  • Rye, J. A., Rubba, P. A., & Wiesenmayer, R. L. (1997). An investigation of middle school students’ alternative conceptions of global warming. International Journal of Science Education, 19(5), 527–551. doi: 10.1080/0950069970190503
  • Schmitt, R. (2005). Systematic metaphor analysis as a method of qualitative research. The Qualitative Report, 10(2), 358–394.
  • Shepardson, D., Choi, S., Niyogi, D., & Charusombat, U. (2011). Seventh grade students’ mental models of the greenhouse effect. Environmental Education Research, 17(1), 1–17. doi: 10.1080/13504620903564549
  • Solomon, M. (2008). Social epistemology of science. In R. A. Duschl & R. E. Grandy (Eds.), Establishing a consensus agenda for K-12 science inquiry (pp. 86–94). Rotterdam, NL: Sense.
  • Steffe, L., Thompson, P., & von Glaserfeld, E. (2000). Teaching experiment methodology: Underlying principles and essential elements. In A. Kelly & R. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 277–309). London: Lawrence Erlbaum Associates.
  • Steinke, I. (2004). Quality criteria in qualitative research. In U. Flick, E. Kardorff, & I. Steinke (Eds.), A companion to qualitative research (pp. 184–191). London: Sage.
  • Sterman, J., & Sweeney, L. B. (2007). Understanding public complacency about climate change: Adults’ mental models of climate change violate conservation of matter. Climatic Change, 80(3), 213–238. doi: 10.1007/s10584-006-9107-5
  • Sweeney, L. B., & Sterman, J. D. (2007). Thinking about systems: Student and teacher conceptions of natural and social systems. System Dynamics Review, 23(2–3), 285–311. doi: 10.1002/sdr.366
  • Vollmer, G. (1984). Mesocosm and objective knowledge. In F. Wuketits (Ed.), Concepts and approaches in evolutionary epistemology (pp. 69–121). Dordrecht: Reidel.
  • Vosniadou, S., & Ioannides, C. (1998). From conceptual development to science education: A psychological point of view. International Journal of Science Education, 20(10), 1213–1230. doi: 10.1080/0950069980201004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.