932
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Supporting Teachers to Attend to Generalisation in Science Classroom Argumentation

, , , &

References

  • AAAS Project 2061. (2002). Middle grades science textbooks: A benchmarks-based evaluation. American Association for the Advancement of Science. Retrieved from http://www.project2061.org/publications/textbook/mgsci/report/mgbooks.htm
  • Bassok, M., & Holyoak, K. J. (1989). Interdomain transfer between isomorphic topics in algebra and physics. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 153–166.
  • Bruner, J. (1961). The act of discovery. Harvard Educational Review, 31, 21–32.
  • Chi, M. T., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5(2), 121–152. doi: 10.1207/s15516709cog0502_2
  • Chin, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63(1), 1–49. doi: 10.3102/00346543063001001
  • Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175–218. doi: 10.1002/sce.10001
  • Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287–312. doi: 10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
  • Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38(1), 37–41. doi: 10.1080/03057260208560187
  • Erduran, S. (2007). Methodological foundations in the study of argumentation in science classrooms. In S. Erduran & M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 47–69). Dordrecht: Springer.
  • Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: Developments in the application of Toulmin's argument pattern for studying science discourse. Science Education, 88(6), 915–933. doi: 10.1002/sce.20012
  • Furtak, E. M., Hardy, I., Beinbrech, C., Shavelson, R. J., & Shemwell, J. T. (2010). A framework for analyzing evidence-based reasoning in science classroom discourse. Educational Assessment, 15(3–4), 175–196. doi: 10.1080/10627197.2010.530553
  • Gentner, D., Loewenstein, J., & Thompson, L. (2003). Learning and transfer: A general role for analogical encoding. Journal of Educational Psychology, 95(2), 393–405. doi: 10.1037/0022-0663.95.2.393
  • Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 1–38. doi: 10.1016/0010-0285(83)90002-6
  • Giere, R. N. (1984). Understanding scientific reasoning (2nd ed.). New York, NY: CBS College.
  • Griggs, R. A., & Cox, J. R. (1982). The elusive thematic-materials effect in Wason's selection task. British Journal of Psychology, 73(3), 407–420. doi: 10.1111/j.2044-8295.1982.tb01823.x
  • Hand, B. (2008). Science inquiry, argument and language: A case for the science writing heuristic. Rotterdam: Sense.
  • Jimenez-Aleixandre, M. P., Rodriguez, A. B., & Duschl, R. A. (2000). ‘Doing the lesson’ or ‘doing science’: Argument in high school genetics. Scence Education, 84(6), 757–792. doi: 10.1002/1098-237X(200011)84:6<757::AID-SCE5>3.0.CO;2-F
  • Kelly, G. J., & Takao, A. (2002). Epistemic levels in argument: An analysis of university oceanography students’ use of evidence in writing. Science Education, 86(3), 314–342. doi: 10.1002/sce.10024
  • Keys, C. W., Hand, B., Prain, V., & Collins, S. (1999). Using the science writing heuristic as a tool for learning from laboratory investigations in secondary science. Journal of Research in Science Teaching, 36(10), 1065–1084. doi: 10.1002/(SICI)1098-2736(199912)36:10<1065::AID-TEA2>3.0.CO;2-I
  • Kolodner, J. L., Krajcik, J. S., Edelson, D. C., Reiser, B. J., & Starr, M. L. (2009). Project based inquiry science (Diving into science). Armonk, NY: It's About Time.
  • Krajcik, J. S., Blumenfeld, P. C., Marx, R. W., & Soloway, E. (1994). A collaborative model for helping middle grade science teachers learn project-based instruction. The Elementary School Journal, 94(5), 483–497. doi: 10.1086/461779
  • Krajcik, J., Blumenfeld, P. C., Marx, R. W., Bass, K. M., Fredricks, J., & Soloway, E. (1998). Inquiry in project-based science classrooms: Initial attempts by middle school students. Journal of the Learning Sciences, 7(3–4), 313–350. doi: 10.1080/10508406.1998.9672057
  • Maxwell, J. A. (2013). Qualitative research design: An interactive approach. Thousand Oaks, CA: Sage.
  • McNeill, K. L., & Krajcik, J. S. (2012). Supporting grade 5–8 students in constructing explanations in science: The claim, evidence, and reasoning framework for talk and writing. Boston: Pearson Education.
  • McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting students’ construction of scientific explanations by fading scaffolds in instructional materials. The Journal of the Learning Sciences, 15(2), 153–191. doi: 10.1207/s15327809jls1502_1
  • Miles, M. B., Huberman, A. M., & Saldaña, J. (2014). Qualitative data analysis: A methods sourcebook. Thousand Oaks, CA: Sage.
  • Minstrell, J., & Kraus, P. (2005). Guided inquiry in the science classroom. In M. S. Donovan & J. D. Bransford (Eds.), How students learn: Science in the classroom (pp. 475–513). Washington, DC: The National Academies Press.
  • National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: The National Academies Press.
  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
  • NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: National Academies Press.
  • Norton-Meier, L., Hand, B., Hockenberry, L., & Wise, K. (2008). Questions, claims, and evidence. Arlington: National Science Teachers Association.
  • Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. London: Cambridge University Press.
  • OECD. (2010). PISA 2009 results: What students know and can do—student performance in reading, mathematics and science (Vol. I). Pisa: Author.
  • Omar, S. (2008). The science writing heuristic as a tool: Professional development of in-service teachers. Saarbrücken: Verlag.
  • Osborne, J., & Dillon, J. (2008). Science education in Europe: Critical reflections (A Report to the Nuffield Foundation). London: Nuffield Foundation.
  • Peirce, C. S. (1878). Deduction, induction, and hypothesis. Popular Science Monthly, 13, 470–482.
  • Piburn, M. D. (1990). Reasoning about logical propositions and success in science. Journal of Research in Science Teaching, 27(9), 887–900. doi: 10.1002/tea.3660270908
  • Popper, K. (1959). The logic of scientific discovery. New York: Routledge Classics.
  • Rittle-Johnson, B., & Star, J. R. (2007). Does comparing solution methods facilitate conceptual and procedural knowledge? An experimental study on learning to solve equations. Journal of Educational Psychology, 99(3), 561–574. doi: 10.1037/0022-0663.99.3.561
  • Roth, K. J., Druker, S. L., Garnier, H. E., Lemmens, M., Chen, C., Kawanaka, T., … Gallimore, R. (2006). Highlights from the TIMSS 1999 video study of eighth-grade science teaching. Washington, DC: National Center for Education Statistics.
  • Sardá, J. A., & Sanmartí, P. N. (2000). Enseñar a argumentar científicamente: un reto de las clases de ciencias. Enseñanza de las Ciencias, 18(3), 405–422.
  • Schwartz, D. L., Chase, C. C., Oppezzo, M. A., & Chin, D. B. (2011). Practicing versus inventing with contrasting cases: The effects of telling first on learning and transfer. Journal of Educational Psychology, 103(4), 759–775. doi: 10.1037/a0025140
  • Shemwell, J. T., Chase, C. C., & Schwartz, D. L. (2015). Seeking the general explanation: A test of inductive activities for learning and transfer. Journal of Research in Science Teaching, 52(1), 58–83.
  • Shemwell, J. T., & Furtak, E. M. (2010). Science classroom discussion as scientific argumentation: A study of conceptually rich (and poor) student talk. Educational Assessment, 15(3–4), 222–250. doi: 10.1080/10627197.2010.530563
  • Simon, S., Erduran, S., & Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2–3), 235–260. doi: 10.1080/09500690500336957
  • Tabak, I., & Reiser, B. J. (1999). Steering the course of dialogue in inquiry-based science classrooms. Paper presented at the annual meeting of the American Educational Research Association, Montreal.
  • Thagard, P. R. (1978). The best explanation: Criteria for theory choice. The Journal of Philosophy, 75(2), 76–92. doi: 10.2307/2025686
  • Toulmin, S. E. (1952). The uses of argument. Cambridge: Cambridge University Press.
  • Walton, D. (2013). Argumentation schemes for presumptive reasoning. New York: Routledge.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.