805
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Varying Use of Conceptual Metaphors across Levels of Expertise in ThermodynamicsFootnote

, &

References

  • Amin, T. G. (2009). Conceptual metaphor meets conceptual change. Human Development, 52(3), 165–197. doi: 10.1159/000213891
  • Amin, T. G., Jeppsson, F., Haglund, J., & Strömdahl, H. (2012). The arrow of time: Metaphorical construals of entropy and the second law of thermodynamics. Science Education, 96(5), 818–848. doi: 10.1002/sce.21015
  • Amin, T. G., Smith, C. L., & Wiser, M. (2014). Student conceptions and conceptual change: Three overlapping phases of research. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research in science education, Volume 2 (pp. 57–81). New York, NY: Routledge.
  • Andersson, B. (1986). The experiential gestalt of causation: A common core to pupils’ preconceptions in science. European Journal of Science Education, 8(2), 155–171. doi: 10.1080/0140528860080205
  • Barsalou, L. (2008). Grounded cognition. Annual Review of Psychology, 59(1), 617–645. doi: 10.1146/annurev.psych.59.103006.093639
  • Brookes, D. T., & Etkina, E. (2007). Using conceptual metaphor and functional grammar to explore how language used in physics affects student learning. Physical Review Special Topics—Physics Education Research, 3(1), 010105. doi: 10.1103/PhysRevSTPER.3.010105
  • Brookes, D. T., & Etkina, E. (2009). “Force,” ontology, and language. Physical Review Special Topics—Physics Education Research, 5(1), 010110. doi: 10.1103/PhysRevSTPER.5.010110
  • Brookes, D. T., & Etkina, E. (2015). The importance of language in students’ reasoning about heat in thermodynamic processes. International Journal of Science Education. doi:10.1080/09500693.2015.1025246
  • Brosseau, C., & Viard, J. (1992). Quelques réflexions sur le concept d'entropie issues d'un enseignement de thermodynamique [Some reflections on the entropy concept from thermodynamics teaching]. Enseñanza de las ciencias, 10(1), 13–16.
  • Brown, D. E., & Clement, J. (1989). Overcoming misconceptions via analogical reasoning: Abstract transfer versus explanatory model construction. Instructional Science, 18(4), 237–261. doi: 10.1007/BF00118013
  • Cheng, M. F., & Brown, D. E. (2010). Conceptual resources in self-developed explanatory models: The importance of integrating conscious and intuitive knowledge. International Journal of Science Education, 32(17), 2367–2392. doi: 10.1080/09500690903575755
  • Chi, M. T. H. (2006a). Laboratory methods for assessing experts’ and novices’ knowledge. In A. Ericsson, N. Charness, P. J. Feltovich, & R. Hoffman (Eds.), The Cambridge handbook of expertise and expert performance (pp. 167–184). New York, NY: Cambridge University Press.
  • Chi, M. T. H. (2006b). Two approaches to the study of experts’ characteristics. In A. Ericsson, N. Charness, P. J. Feltovich, & R. Hoffman (Eds.), The Cambridge handbook of expertise and expert performance (pp. 21–30). New York, NY: Cambridge University Press.
  • Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5(2), 121–152. doi: 10.1207/s15516709cog0502_2
  • Chi, M. T. H., Glaser, R., & Rees, E. (1982). Expertise in problem solving. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 1, pp. 7–75). Hillsdale, NJ: Erlbaum.
  • Chi, M. T. H., Slotta, J. D., & De Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4(1), 27–43. doi: 10.1016/0959-4752(94)90017-5
  • Clark, A. (2008). Supersizing the mind: Embodiment, action, and cognitive extension. Oxford: Oxford University Press.
  • Clement, J. (2009). Creative model construction in scientists and students: The role of imagery, analogy, and mental simulation. Dordrecht, NL: Springer.
  • Close, H., & Scherr, R. (2015). Enacting conceptual metaphor through blending: Learning activities embodying the substance metaphor for energy. International Journal of Science Education. doi:10.1080/09500693.2015.1025307
  • diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2–3), 105–225. doi: 10.1080/07370008.1985.9649008
  • diSessa, A. A., & Sherin, B. L. (1998). What changes in conceptual change? International Journal of Science Education, 20(10), 1155–1191. doi: 10.1080/0950069980201002
  • Dreyfus, H. L., Dreyfus, S. E., & Athanasiou, T. (1986). Mind over machine: The power of human intuition and expertise in the era of the computer. New York, NY: Free Press.
  • Dreyfus, B., Gupta, A., & Redish, E. (2015). Applying conceptual blending to model coordinated use of multiple ontological metaphors. International Journal of Science Education. doi:10.1080/09500693.2015.1025306
  • Einstein, A. (1905/1998). On a heuristic point of view concerning the production and transformation of light. In J. Stachel (Ed.), Einstein's miraculous year: Five papers that changed the world of physics (pp. 177–198). Princeton, NJ: Princeton University Press.
  • Einstein, A. (1954). Ideas and opinions. New York, NY: Crown.
  • Falk, G., Herrmann, F., & Schmid, G. B. (1983). Energy forms or energy carriers? American Journal of Physics, 51(12), 1074–1077. doi: 10.1119/1.13340
  • Fauconnier, G., & Turner, M. (1998). Conceptual integration networks. Cognitive Science, 22(2), 133–187. doi: 10.1207/s15516709cog2202_1
  • Georgiou, H. (2014). Doing positive work: On student understanding of thermodynamics (PhD dissertation), The University of Sydney, Sydney, Australia.
  • Greeno, J. G. (1989). A perspective on thinking. American Psychologist, 44(2), 134–141. doi: 10.1037/0003-066X.44.2.134
  • Haglund, J., & Jeppsson, F. (2014). Confronting conceptual challenges in thermodynamics by use of self-generated analogies. Science & Education, 23(7), 1505–1529. doi: 10.1007/s11191-013-9630-5
  • Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64–74. doi: 10.1119/1.18809
  • Hammer, D. (2000). Student resources for learning introductory physics. American Journal of Physics, 68(S1), S52–S59. doi: 10.1119/1.19520
  • Hoffman, R. R. (1998). How can expertise be defined? Implications of research from cognitive psychology. In R. Williams, W. Faulkner, & J. Fleck (Eds.), Exploring expertise (pp. 81–100). Mahwah, NJ: Erlbaum.
  • Jeppsson, F., Haglund, J., Amin, T. G., & Strömdahl, H. (2013). Exploring the use of conceptual metaphors in solving problems on entropy. Journal of the Learning Sciences, 22(1), 70–120. doi: 10.1080/10508406.2012.691926
  • Johnson, M. (1987). The body in the mind: The bodily basis of meaning, imagination, and reason. Chicago, IL: University of Chicago Press.
  • Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago, IL: The University of Chicago Press.
  • Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh. New York, NY: Basic Books.
  • Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York, NY: Basic Books.
  • Larkin, J., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice performance in solving physics problems. Science, 208(4450), 1335–1342. doi: 10.1126/science.208.4450.1335
  • Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. Cambridge: Cambridge University Press.
  • Ochs, E., Gonzales, P., & Jacoby, S. (1996). “When I come down I'm in the domain state”: Grammar and graphic representation in the interpretive activity of physicists. In E. Ochs, E. A. Schegloff, & S. A. Thompson (Eds.), Interaction and grammar (pp. 328–369). Cambridge: Cambridge University Press.
  • Pragglejaz Group. (2007). MIP: A method for identifying metaphorically used words in discourse. Metaphor and Symbol, 22(1), 1–39. doi: 10.1080/10926480709336752
  • Reiner, M. (2000). Thought experiments and embodied cognition. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education (pp. 157–176). Dordrecht, the Netherlands: Kluwer.
  • Reiner, M., & Gilbert, J. (2000). Epistemological resources for thought experimentation in science learning. International Journal of Science Education, 22(5), 489–506. doi: 10.1080/095006900289741
  • Root-Bernstein, R. S. (2002). Aesthetic cognition. International Studies in the Philosophy of Science, 16(1), 61–77. doi: 10.1080/02698590120118837
  • Salk, J. (1983). The anatomy of reality. New York, NY: Columbia University Press.
  • Scherr, R. E., Close, H. G., Close, E. W., Flood, V. J., McKagan, S. B., Robertson, A. D., Wittman, M. C., & Vokos, S. (2013). Negotiating energy dynamics through embodied action in a materially structured environment. Physical Review Special Topics—Physics Education Research, 9(2), 020105. doi: 10.1103/PhysRevSTPER.9.020105
  • Sherin, B. L. (2001). How students understand physics equations. Cognition and Instruction, 19(4), 479–541. doi: 10.1207/S1532690XCI1904_3
  • Sherin, B. L. (2006). Common sense clarified: The role of intuitive knowledge in physics problem solving. Journal of Research in Science Teaching, 43(6), 535–555. doi: 10.1002/tea.20136
  • Singh, C. (2002). When physical intuition fails. American Journal of Physics, 70(11), 1103–1109. doi: 10.1119/1.1512659
  • Slotta, J. D., Chi, M. T. H., & Joram, E. (1995). Assessing students’ misclassifications of physics concepts: An ontological basis for conceptual change. Cognition and Instruction, 13(3), 373–400. doi: 10.1207/s1532690xci1303_2
  • Smith, J. P., diSessa, A. A., & Roschelle, J. (1993). Misconceptions reconceived: A constructivist analysis of knowledge in transition. Journal of the Learning Sciences, 3(2), 115–163. doi: 10.1207/s15327809jls0302_1
  • Stolpe, K., & Björklund, L. (2011). Seeing the wood for the trees: Applying the dual-memory system model to investigate expert teachers’ observational skills in natural ecological learning environments. International Journal of Science Education, 34(1), 101–125. doi: 10.1080/09500693.2011.561505
  • Talmy, L. (1988). Force dynamics in language and cognition. Cognitive Science, 12(1), 49–100. doi: 10.1207/s15516709cog1201_2
  • Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. Cambridge: MIT Press.
  • Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep, or a firefly: Learning biology through constructing and testing computational theories—An embodied modeling approach. Cognition and Instruction, 24(2), 171–209. doi: 10.1207/s1532690xci2402_1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.