2,026
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Conceptual Metaphor and the Study of Conceptual Change: Research synthesis and future directions

References

  • Amin, T. G. (2001). A cognitive linguistics approach to the layperson's understanding of thermal phenomena. In A. Cienki, B. Luka, & M. Smith (Eds.), Conceptual and discourse factors in linguistic structure (pp. 27–44). Stanford, CA: CSLI.
  • Amin, T. G. (2009). Conceptual metaphor meets conceptual change. Human Development, 52(3), 165–197. doi: 10.1159/000213891
  • Amin, T. G., Jeppsson, F., Haglund, J., & Strömdahl, H. (2012). Arrow of time: Metaphorical construals of entropy and the second law of thermodynamics. Science Education, 96(5), 818–848. doi: 10.1002/sce.21015
  • Amin, T. G., Smith, C., & Wiser, M. (2014). Student conceptions and conceptual change: Three overlapping phases of research. In N. Lederman & S. Abell (Eds.), Handbook of research in science education, vol II (pp. 57–81). New York, NY: Taylor and Francis.
  • Andersson, B. (1986). The experiential gestalt of causation: A common core to pupils’ preconceptions in science. European Journal of Science Education, 8(2), 155–171. doi: 10.1080/0140528860080205
  • Brewe, E. (2011). Energy as a substance-like quantity that flows: Theoretical considerations and pedagogical consequences. Physical Review Special Topics: Physics Education Research, 7(2), 0201006, 1–14.
  • Brookes, D. T., & Etkina, E. (2007). Using conceptual metaphor and functional grammar to explore how language used in physics affects student learning. Physical Review Special Topics: Physics Education Research, 3(1), 010105.
  • Brookes, D. T., & Etkina, E. (2009). ‘Force,’ ontology and language. Physical Review Special Topics: Physics Education Research, 5(1), 010110, 1–13.
  • Brookes, D. T., & Etkina, E. (2015). The importance of language in students' reasoning about heat in thermodynamics processes. International Journal of Science Education. doi:10.1080/09500693.2015.1025246
  • Brown, D. E. (1993). Refocusing core intuitions: A conceretizing role for analogy in conceptual change. Journal of Research in Science Teaching, 30(10), 1273–1290. doi: 10.1002/tea.3660301009
  • Brown, D., & Clement, J. (1989). Overcoming misconceptions via analogical reasoning: Abstract transfer versus explanatory model construction. Instructional Science, 18(4), 237–261. doi: 10.1007/BF00118013
  • Brown, D., & Hammer, D. (2008). Conceptual change in physics. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 127–154). New York, NY: Routledge.
  • Budwig, N. (1999). The contribution of language to the study of the mind: A tool for researchers and children. Human Development, 42, 362–368. doi: 10.1159/000022643
  • Carey, S. (1985). Are children fundamentally different types of thinkers and learners than adults? In S. Chipman, J. Segal, & R. Glaser (Eds.), Thinking and learning skills (Vol. 2, pp. 485–517). Hillsdale, NJ: Erlbaum. Reprinted by Open University Press: Open University Readings in Cognitive Development.
  • Carey, S. (2009). The origin of concepts. New York, NY: Oxford University Press.
  • Cheng, M. F., & Brown, D. E. (2010). Conceptual resources in self-developed explanatory models: The importance of integrating conscious and intuitive knowledge. International Journal of Science Education, 32(17), 2367–2392. doi: 10.1080/09500690903575755
  • Chi, M. T. H. (2005). Common sense conceptions of emergent processes. The Journal of the Learning Sciences, 14, 161–199. doi: 10.1207/s15327809jls1402_1
  • Chi, M. T. H., Slotta, J. D., & De Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning & Instruction, 4(1), 27–43. doi: 10.1016/0959-4752(94)90017-5
  • Clement, J. (1993). Using bridging analogies and anchoring intuitions to deal with students’ preconceptions in physics. Journal of Research in Science Teaching, 30(10), 1241–1257. doi: 10.1002/tea.3660301007
  • Clement, J. (1989). Learning via model construction and criticism: Protocol evidence on sources of creativity in science. In J. A. Glover, R. R. Ronning, & C. R. Reynolds (Eds.), Handbook of creativity (pp. 341–381). New York, NY: Plenum Press.
  • Clement, J. (2009). Creative model construction in scientists and students: The role of imagery, analogy, and mental simulation. Dordrecht: Springer.
  • Close, H., & Scherr, R. (2015). Enacting conceptual metaphor through blending: Learning activities embodying the substance metaphor for energy. International Journal of Science Education. doi:10.1080/09500693.2015.1025307
  • Corcoran, T., Mosher, F., & Rogat, A. (2009). Learning progressions in science: An evidence-based approach to reform (Unpublished CPRE Research Report #RR-63). Teachers College, Columbia University.
  • diSessa, A. (2002). Why ‘conceptual ecology’ is a good idea. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change. Issues in theory and practice (pp. 29–60). Dordrecht: Kluwer Academic.
  • diSessa, A. (2006). A history of conceptual change research: Threads and fault lines. In R. Sawyer (Eds.), The Cambridge handbook of the learning sciences (pp. 265–281). Cambridge, MA: Cambridge University Press.
  • diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2–3), 105–225. doi: 10.1080/07370008.1985.9649008
  • diSessa, A. A. (2014). The construction of causal schemes: Learning mechanisms at the knowledge level. Cognitive Science, 38(5), 795–850. doi: 10.1111/cogs.12131
  • Dreyfus, B. W., Geller, B. D., Gouvea, J., Sawtelle, V., Turpen, C., & Redish, E. F. (2014). Ontological metaphors for negative energy in an interdisciplinary context. Physical Review Special Topics: Physics Education Research, 10, 020108.
  • Dreyfus, B. W., Gupta, A. & Redish, J. (2015). Applying conceptual blending to model coordinated use of multiple ontological metaphors. International Journal of Science Education. doi:10.1080/09500693.2015.1025306
  • Driver, R. & Easley, J. (1978). Pupils and paradigms: A review of the literature related to concept development in adolescent science students. Studies in Science Education, 5, 61–84. doi: 10.1080/03057267808559857
  • Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671–688. doi: 10.1080/09500690305016
  • Fauconnier, G., & Turner, M. (2002). The way we think: Conceptual blending and the mind's hidden complexities. New York, NY: Basic Books.
  • Gentner, D. (2010). Bootstrapping the mind: Analogical processes and symbol systems. Cognitive Science, 34(5), 752–775. doi: 10.1111/j.1551-6709.2010.01114.x
  • Gilbert, J. K., & Treagust, D. F. (2009). Multiple representations in chemical education. Dordrecht: Springer.
  • Glynn, S. M. (1989). The teaching with analogies model. In K. D. Muth (Ed.), Children's comprehension of text: Research into practice (pp. 185–204). Newark, NJ: International Reading Association.
  • Gupta, A., Elby, A., & Conlin, L. D. (2014). How substance-based ontologies for gravity can be productive: A case study. Physical Review Special Topics: Physics Education Research, 10, 010113.
  • Gupta, A., Hammer, D., & Redish, E. F. (2010). The case for dynamic models of learners’ ontologies in physics. Journal of the Learning Sciences, 19(3), 285–321. doi: 10.1080/10508406.2010.491751
  • Haglund, J., Jeppsson, F., & Ahrenberg, L. (2014). Taking advantage of the ‘Big Mo'—Momentum in everyday English and Swedish and in physics teaching. Research in Science Education. doi:10.1007/s11165-014-9426-x
  • Hatano, G., & Inagaki, K. (1991). Sharing cognition through collective comprehension activity. In L. B. Resnick, J. M. Levine, & S. D. Teasley (Eds.), Perspectives on social shared cognition (pp. 331–348). Washington, DC: American Psychological Association.
  • Hofer, B., & Pintrich, P. (1997). The development of epistemological theories: Beliefs about knowledge and knowledge their relations to learning. Review of Educational Research, 67, 88–140. doi: 10.3102/00346543067001088
  • Howe, C., Tolmie, A., & Rodgers, C. (1992). The acquisition of conceptual knowledge in science by primary school children: Group interaction and the understanding of motion down an incline. British Journal of Developmental Psychology, 10, 113–130. doi: 10.1111/j.2044-835X.1992.tb00566.x
  • Jeppsson, F., Haglund, J., & Amin, T. (2015). Varying use of conceptual metaphor across levels of expertise in thermodynamics. International Journal of Science Education. doi:10.1080/09500693.2015.1025247
  • Jeppsson, F., Haglund, J., Amin, T. G., & Strömdahl, H. (2013). Exploring the use of conceptual metaphor in solving problems on entropy. Journal of the Learning Sciences, 22(1), 70–120. doi: 10.1080/10508406.2012.691926
  • Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago, MA: University of Chicago Press.
  • Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh. New York, NY: Basic Books.
  • Lancor, R. A. (2013). The many metaphors of energy: Using analogies as a formative assessment tool. Journal of College Science Teaching, 42(3), 38–45.
  • Lancor, R. A. (2014a). Using student-generated analogies to investigate conceptions of energy: A multidisciplinar study. International Journal of Science Education, 36(1), 1–23. doi: 10.1080/09500693.2012.714512
  • Lancor, R. A. (2014b). Using metaphor theory to examine conceptions of energy in biology, chemistry, and physics. Science & Education, 23(6), 1245–1267. doi: 10.1007/s11191-012-9535-8
  • Lancor, R. A. (2015). An analysis used by students to describe energy in an interdisciplinary general science course. International Journal of Science Education. doi:10.1080/09500693.2015.1025309
  • Mandler, J. (2004). The foundations of mind: The origins of conceptual thought. Oxford, MA: Oxford University Press.
  • Mathewson, J. H. (2005). The visual core of science. International Journal of Science Education, 27, 529–548. doi: 10.1080/09500690500060417
  • McCloskey, M. (1983). Naïve theories of motion. In D. Gentner & A. Stevens (Eds.), Mental models (pp. 299–324). Hillsdale, NJ.: Erlbaum.
  • Niebert, K., & Gropengieβer, H. (2015). Understanding starts in the mesocosm: Conceptual Metaphor as a Framework to develop external representations for science teaching. International Journal of Science Education. doi:10.1080/09500693.2015.1025310
  • Niebert, K., Marsch, S., & Treagust, D. F. (2012). Understanding needs embodiment: A theory-guided reanalysis of the role of metaphors and analogies in understanding science. Science Education, 96(5), 849–877. doi: 10.1002/sce.21026
  • Scherr, R. E., Close, H. G., Close, E. W., Flood, V. J., McKagan, S. B., Robertson, A. D., & Vokos, S. (2013). Negotiating energy dynamics through embodied action in a materially structured environment. Physical Review Special Topics: Physics Education Research, 9(2), 020105.
  • Scherr, R. E., Close, H. G., Close, E. W., & Vokos, S. (2012). Representing energy. II. Energy tracking representations. Physics Review Special Topics: Physics Education Research, 8(2), 020115 1–11.
  • Scherr, R. E., Close, H. G., McKagan, S. B., & Vokos, S. (2012). Representing energy. I. Representing a substance ontology for energy. Physical Review Special Topics: Physics Education Research, 8(2), 020114. doi: 10.1103/PhysRevSTPER.8.020114
  • Scott, P. H., Asoko, H., & Driver, R. H. (1992). Teaching for conceptual change: Review of strategies. In R. Duit, F. Goldberg, & H. Niederer (Eds.), Research in physics learning: Theoretical issues and empirical studies (pp. 310–329). Kiel: IPN - Institute for Science Education.
  • Sherin, B. (2001). How students understand physics equations. Cognition and Instruction, 19(4), 479–541. doi: 10.1207/S1532690XCI1904_3
  • Sherin, B. (2006). Common sense clarified: The role of intuitive knowledge in physics problem-solving. Journal of Research in Science Teaching, 43(6), 535–555. doi: 10.1002/tea.20136
  • Strike, K. A., & Posner, G. J. (1985). A conceptual change view of learning and understanding. In L. H. West & A. L. Pines (Eds.), Conceptual structure and conceptual change (pp. 189–210). Orlando: Academic Press.
  • Vosniadou, S. (2009). Yes to embodiment, no fragmentation: Commentary on Amin 2009. Human Development, 52(3), 198–204. doi: 10.1159/000213892
  • Vosniadou, S. (2013a). International handbook of research on conceptual change (2nd ed.). New York, NY: Routledge.
  • Vosniadou, S. (2013b). Conceptual change in learning and instruction: The framework theory approach. In S. Vosniadou (Ed.), International handbook of research on conceptual change (2nd ed. pp. 11–30). New York, NY: Routledge.
  • Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24, 535–585. doi: 10.1016/0010-0285(92)90018-W
  • White, B. Y. (1995). The ThinkerTools Project: Computer microworlds as conceptual tools for facilitating scientific inquiry. In S. M. Glynn & R. Duit (Eds.), Learning science in the schools: Research reforming practice (pp. 201–227). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Williams, R. F. (2011/2012). Image schemas in clock-reading: Latent errors and emerging expertise. Journal of the Learning Sciences, 21(2), 216–246. doi: 10.1080/10508406.2011.553259
  • Wiser, M. (1995). Use of history of science to understand and remedy students’ misconceptions about heat and temperature. In D. N. Perkins, J. L. Schwartz, M. M. West, & M. S. Stone (Eds.), Software goes to school (pp. 23–38). New York, NY: Oxford University Press.
  • Wiser, M., & Smith, C. (2013). Learning and teaching about matter in the middle school years: How can the atomic-molecular theory be meaningfully introduced? In S. Vosniadou (Ed.), International handbook of research on conceptual change (2nd ed. pp. 177–194). New York, NY: Routledge.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.