495
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Co-development of Conceptual Understanding and Critical Attitude: Analyzing texts on radiocarbon dating

&

References

  • Besson, U., De Ambrosis, A., & Mascheretti, P. (2010). Studying the physical basis of global warming: Thermal effects of the interaction between radiation and matter and greenhouse effect. European Journal of Physics, 31, 375–388. doi:10.1088/0143-0807/31/2/015
  • Colin, P. (2011). Enseignement et vulgarisation scientifique: une frontière en cours d'effacement? Une étude de cas autour de l'effet de serre [Education and scientific popularization: A border which tends to disappear? A case study about greenhouse effect]. Spirale, 48, 63–84. Retrieved from http://spirale-edu-revue.fr/spip.php?article1081
  • DiSessa, A. A. (1983). Phenomenology and the evolution of intuition. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 15–33). Hillsdale, NJ: Lawrence Erlbaum.
  • DiSessa, A. A. (2008). A bird's-eye view of the ‘pieces’ vs. ‘coherence’ controversy (from the ‘Pieces’ side of the fence). In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 35–60). New York, NY: Routledge.
  • Driver, R., Guesnes, E., & Tiberghien, A. (1985). Some features of children's ideas and their implications for teaching. In R. Driver, E. Guesne, & A. Tiberghien (Eds.), Children's ideas in science (pp. 193–201). Milton Keynes: Open University Press.
  • Duit, R. (2009). Bibliography STCSE, students’ and teachers’ conceptions and science education. Retrieved from http://archiv.ipn.uni-kiel.de/stcse/
  • Ennis, R. H. (1992). The degree to which critical thinking is subject specific: Clarification and needed research. In S. Norris (Ed.), The generalizability of critical thinking: Multiple perspective on an educational ideal (pp. 21–37). New York, NY: Teachers College Press.
  • Fauconnet, S. (1984). Etude de résolution de problèmes analogues, In A. Tiberghien (Ed.), Research on physics education: Proceedings of the first international workshop, La Londe les Maures 1983 (pp. 261–269). Paris: CNRS.
  • Feller, I., Colin, P., & Viennot, L. (2009). Critical analysis of popularisation documents in the physics classroom. An action-research in grade 10. Problems of Education in the 21st Century, 17, 72–96. Retrieved from http://journals.indexcopernicus.com/abstract.php?icid=900326
  • Flavell, J. H. (1987). Speculations about the nature and development of metacognition. In F. E. Weinert & R. Kluwe (Eds.), Metacognition, motivation, and understanding (pp. 21–29). Hillsdale, NJ: L. Erlbaum Associates.
  • Furtak, E. M., Seidel, T., Iverson, H., & Briggs, D. C. (2012). Experimental and quasi-experimental studies of inquiry-based science teaching: A meta-analysis. Review of Educational Research, 82, 300–329. doi:10.3102/0034654312457206
  • Giancoli, D. C. (2005). Physics (6th ed.): Instructor resource center CD-ROM. Upper Saddle River, NJ: Pearson Prentice Hall.
  • Habermas, J. (1981). The theory of communicative action. Boston, MA: Beacon Press.
  • Jenkins, E. W. (2007). School science: A questionable construct? Journal of Curriculum Studies, 39, 265–282. doi:10.1080/00220270701245295
  • Jiménez-Aleixandre, M. P. (2007). Designing argumentation learning environments. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 91–115). New York, NY: Springer. doi:10.1007/978-1-4020-6670-2
  • Jiménez-Aleixandre, M. P., & Erduran, S. (2007). Argumentation in science education: An overview. In S. Erduran & M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education perspectives from classroom-based research (pp. 3–28). Dordrecht: Springer. doi:10.1007/978-1-4020-6670-2
  • Jiménez-Aleixandre, M. P., & Puig, B. (2009). Argumentation, evidence evaluation and critical thinking. In B. J. Fraser, K. Tobin, & C. McRobbie (Eds.), Second international handbook of science education (pp. 1001–1015). Dordrecht: Springer. doi:10.1007/978-1-4020-9041-7
  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41, 75–86. doi:10.1207/s15326985ep4102_1
  • Komorek, M., & Duit, R. (2004). The teaching experiment as a powerful method to develop and evaluate teaching and learning sequences in the domain of non-linear systems. Internatinal Journal of Science Education, 26, 619–633. doi:10.1080/09500690310001614717
  • Kuhn, D. (1991). The skills of arguments. Cambridge: Cambridge University Press.
  • Libby, W. F. (1964). Nobel lecture: Radiocarbon dating. In Nobel foundation staff (Eds.), Nobel lectures, chemistry 1942–1962 (pp. 587–612). Amsterdam: Elsevier.
  • Marton, F. (1981). Phenomenography: Describing conceptions of the world around us. Instructional Science, 10, 177–200. doi:10.1007/BF00132516
  • Marton, F. (1986). Phenomenography—A research approach to investigating different understandings of reality. Journal of Thought, 21, 28–49.
  • Marton, F., & Booth, S. (1997). Learning and awareness. Mahwah, NJ: Erlbaum, Psychology Press.
  • Mathé, S., & Viennot, L. (2009). Stressing the coherence of physics: Students journalists’ and science mediators’ reactions. Problems of Education in the 21st Century, 11, 104–128. Retrieved from http://journals.indexcopernicus.com/abstract.php?icid=886218
  • McPeck, J. (1981). Critical thinking and education. New York, NY: St Martin's Press.
  • Meyer, J. H. F., & Land, R. (2003). Threshold concepts and troublesome knowledge 1—Linkages to ways of thinking and practising. In C. Rust (Ed.), Improving student learning—Ten years on. Oxford: OCSLD. Retrieved from http://www.colorado.edu/ftep/documents/ETLreport4-1.pdf
  • Minner, D. D., Levy, A. J., & Century, J. (2009). Inquiry-based science instruction—What is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47, 474–496. doi:10.1002/tea.20347
  • Moore, T. (2004). The critical thinking debate: How general are general thinking skills? Higher Education Research & Development, 23, 3–18. doi:10.1080/0729436032000168469
  • National Research Council. (1996). The national science education standards. Washington, DC: National Academy Press.
  • Ogborn, J. (1997). Constructivist metaphors of learning science. Science & Education, 6, 121–133. doi:10.1023/A:1008642412858
  • Osborne, J., & Dillon, J. (2008). Science education in Europe: Critical reflexions. Nuffield Foundation. Retrieved from www.nuffieldfoundation.org/sites/default/files/Sci_Ed_in_Europe_Report_Final.pdf
  • Rocard, Y., Csermely, P., Jorde, D., Lenzen, D., Walberg-Henriksson, H., & Hemmo, V. (2007). Science education now: A renewed pedagogy for the future of Europe. Report EU22–845. Brussels: European Commission.
  • Rozier, S., & Viennot, L. (1991). Students’ reasoning in elementary thermodynamics. International Journal of Science Education, 13, 159–170. doi:10.1080/0950069910130203
  • Strauss, A., & Corbin, J. (1990). Basics of qualitative research: Grounded theory, procedures and techniques. Newbury Park, CA: Sage.
  • Vermunt, J. D. (1996). Metacognitive, cognitive and affective aspects of learning styles and strategies: A phenomenographic analysis. Higher Education, 31, 25–50. doi:10.1007/BF00129106
  • Viennot, L. (1988). Tendance à la réduction fonctionnelle: Obstacle au savoir scientifique et objet de consensus. In N. Berdnaz & C. Garnier (Eds.), Construction des savoirs. Obstacles et conflits (pp. 84–92). Montréal: CIRADE, Université du Québec.
  • Viennot, L. (2001). Reasoning in physics (chap. 5). Dordrecht: Kluwer.
  • Viennot, L. (2006). Teaching rituals and students’ intellectual satisfaction. Physics Education, 41, 400–408. doi:10.1088/0031-9120/41/5/004
  • Viennot, L., & de Hosson, C. (2012). Beyond a dichotomic approach: The case of colour phenomena. International Journal of Science Education, 34, 1315–1336. doi:10.1080/09500693.2012.679034
  • Viennot, L., & de Hosson, C. (2015). From a substractive to multiplicative approach: A concept-driven interactive pathway on the selective absorption of light. International Journal of Science Education, 37, 1–30. doi:10.1080/09500693.2015.950186
  • Vosniadou, S. (2002). On the nature of naïve physics. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 61–76). Dordrecht: Kluwer. doi:10.1007/0-306-47637-1_3
  • Walton, D. N. (1996). Argumentation schemes for presumptive reasoning. Mahwah, NJ: Lawrence Erlbaum.
  • Willingham, D. T. (2007). Critical thinking why is it so hard to teach? American Educator, 1–19. Retrieved from http://www.aft.org/sites/default/files/periodicals/Crit_Thinking.pdf
  • Zohar, A., & Barzilai, S. (2013). A review of research on metacognition in science education: Current and future directions. Studies in Science Education, 49(2), 121–169. doi:10.1080/03057267.2013.847261

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.