843
Views
28
CrossRef citations to date
0
Altmetric
Articles

Providing vertical coherence in explanations and promoting reasoning across levels of biological organization when teaching evolution

, , &
Pages 960-992 | Received 03 Aug 2015, Accepted 01 Apr 2016, Published online: 27 Apr 2016

References

  • Allen, J. H., & Wold, J. (2009). Investigating contemporary evolution via size-selective harvesting. The American Biology Teacher, 71(3), 151–155. doi: 10.2307/27669397
  • Anderson, C. W., Sheldon, T. H., & Dubay, J. (1990). The effect of instruction on college nonmajors’ conceptions of respiration and photosynthesis. Journal of Research in Science Teaching, 27(8), 761–776. doi: 10.1002/tea.3660270806
  • Banet, E., & Ayuso, G. E. (2003). Teaching of biological inheritance and evolution of living beings in secondary school. International Journal of Science Education, 25(3), 373–407. doi: 10.1080/09500690210145716
  • Bishop, B. A., & Anderson, C. W. (1990). Student conceptions of natural selection and its role on evolution. Journal of Research in Science Teaching, 27(5), 415–427. doi: 10.1002/tea.3660270503
  • Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.) (2000). How people learn: Brain, mind, experience, and school. Washington, DC: National Academy Press.
  • Brown, M. H., & Schwartz, R. S. (2009). Connecting photosynthesis and cellular respiration: Pre-service teachers’ conceptions. Journal of Research in Science Teaching, 46(7), 791–812. doi: 10.1002/tea.20287
  • Brumby, M. N. (1984). Misconceptions about the concept of natural selection by medical biology students. Science Education, 68(4), 493–503. doi: 10.1002/sce.3730680412
  • Canal, P. (1999). Photosynthesis and ‘inverse respiration’ in plants: An inevitable misconception? International Journal of Science Education, 21(4), 363–371. doi: 10.1080/095006999290598
  • Cavallo, A. M. L., & McCall, D. (2008). Seeing may not mean believing: Examining students’ understandings and beliefs in evolution. The American Biology Teacher, 70(9), 522–530. doi: 10.2307/27669336
  • Chi, M. (2005). Commonsense conceptions of emergent processes. Why some misconceptions are robust. The Journal of the Learning Sciences, 14(2), 161–199. doi: 10.1207/s15327809jls1402_1
  • Christensen-Dalsgaard, J., & Kanneworff, M. (2009). Evolution in Lego®: A physical simulation of adaptation by natural selection. Evolution: Education and Outreach, 2(3), 518–526.
  • Conover, D. O., & Munch, S. B. (2002). Sustaining fisheries yields over evolutionary time scales. Science, 297, 94–96. doi: 10.1126/science.1074085
  • Deadman, J. A., & Kelly, P. J. (1978). What do secondary school boys understand about evolution and heredity before they are taught about the topics? Journal of Biological Education, 12(1), 7–15. doi: 10.1080/00219266.1978.9654169
  • Demastes, S. S., Good, R., & Peebles, P. (1995). Students’ conceptual ecologies and the process of conceptual change in evolution. Science Education, 79, 637–666. doi: 10.1002/sce.3730790605
  • Deniz, H., Donnelly, L. A., & Yilmaz, I. (2008). Exploring the factors related to acceptance of evolutionary theory among Turkish pre-service biology teachers: Toward a more informative conceptual ecology for biological evolution. Journal of Research in Science Teaching, 45(4), 420–443.
  • Dougherty, M. J. (2009). Closing the gap: Inverting the genetics curriculum to ensure an informed public. The American Journal of Human Genetics, 85, 6–12. doi: 10.1016/j.ajhg.2009.05.010
  • Dreyfus, A., & Jungwirth, E. (1989). The pupil and the living cell: A taxonomy of dysfunctional ideas about an abstract idea. Journal of Biological Education, 23, 49–55. doi: 10.1080/00219266.1989.9655024
  • Duncan, R. G., & Reiser, B. J. (2007). Reasoning across ontologically distinct levels: Students’ understandings of molecular genetics. Journal of Research in Science Teaching, 44(7), 938–959. doi: 10.1002/tea.20186
  • Ebert-May, D., Bazli, J., & Lim, H. (2003). Disciplinary research—strategies of assessment of learning. BioScience, 53, 1221–1228. doi: 10.1641/0006-3568(2003)053[1221:DRSFAO]2.0.CO;2
  • Fenberg, P. B., & Roy, K. (2008). Ecological and evolutionary consequences of size-selective harvesting: How much do we know? Molecular Ecology, 17, 209–220. doi: 10.1111/j.1365-294X.2007.03522.x
  • Ferrari, M., & Chi, T. H. (1998). The nature of naïve explanations of natural selection. International Journal of Science Education, 20(10), 1231–1256. doi: 10.1080/0950069980201005
  • Fifield, S., & Fall, B. (1992). A hands-on simulation of natural selection in an imaginary organism Platysoma apoda. The American Biology Teacher, 54(4), 230–235. doi: 10.2307/4449461
  • Flores, F., Tovar, M., & Gallegos, L. (2003). Representation of the cell and its processes in high school students. An integrated view. International Journal of Science Education, 25(2), 269–286. doi: 10.1080/09500690210126793
  • Frey, F., Lively, C., & Brodie, E. (2010). Selection and evolution with a deck of cards. Evolution: Education and Outreach, 3(1), 114–120.
  • Halldén, O. (1988). The evolution of the species: Pupil perspectives and school perspectives. International Journal of Science Education, 10(5), 541–552. doi: 10.1080/0950069880100507
  • Kampourakis, K., & Zogza, V. (2007). Students’ preconceptions about evolution: How accurate is the characterization as “Lamarckian” when considering the history of evolutionary thought? Science & Education, 16(3–5), 393–422. doi: 10.1007/s11191-006-9019-9
  • Kampourakis, K., & Zogza, V. (2008). Students’ intuitive explanations of the causes of homologies and adaptations. Science & Education, 17(1), 27–47. doi: 10.1007/s11191-007-9075-9
  • Kampourakis, K., & Zogza, V. (2009). Preliminary explanations: A basic framework for conceptual change and explanatory coherence in evolution. Science & Education, 18, 1313–1340. doi: 10.1007/s11191-008-9171-5
  • Kelemen, D. (2012). Teleological minds – how natural intuitions about agency and purpose influence learning about evolution. In K. S. Rosengren, S. K. Brem, E. M. Evans, & G. M. Sinatra (Eds.), Evolution challenges (pp. 66–92). Oxford: Oxford University Press.
  • Knippels, M.-C. P. J. (2002). Coping with the abstract and complex nature of genetics in biology education: The yo–yo learning and teaching strategy. Utrecht: CD-β Press.
  • Knippels, M.-C. P. J., Waarlo, A. J., & Boersma, K. T. (2005). Design criteria for learning and teaching genetics. Journal of Biological Education, 39(3), 108–112. doi: 10.1080/00219266.2005.9655976
  • Konnemann, C., Asshoff, R., & Hammann, M. (2012). Einstellungen zur Evolutionstheorie. Theoretische und messtheoretische Klärungen [Attitudes towards evolutionary theory. Theoretical and psychometric issues]. Zeitschrift für Didaktik der Naturwissenschaften, 18, 55–79.
  • Lauer, T. E. (2000). Jelly Belly® Jelly Beans & evolutionary principles in the classroom: Appealing to the students’ stomachs. The American Biology Teacher, 62(1), 42–45.
  • Lewis, J., & Kattmann, U. (2004). Traits, genes, particles and information: revisiting students’ understanding of genetics. International Journal of Science Education, 26, 195–206. doi: 10.1080/0950069032000072782
  • Lewis, J., Leach, J., & Wood-Robinson, C. (2000). All in the genes? – young people’s understanding of the nature of genes. Journal of Biological Education, 34(2), 74–79. doi: 10.1080/00219266.2000.9655689
  • Lijnse, P. L., Licht, P., de Vos, W., Waarlo, A. J. (Eds.). (1990). Relating macroscopic phenomena to microscopic particles – a central problem in secondary science education. Utrecht: CD-ß Press.
  • Manokore, V., & Williams, M. (2012). Middle school students’ reasoning about biological inheritance: Student’s resemblance theory. International Journal of Biology Education, 2(1), 1–31.
  • Marbach-Ad, G., & Stavy, R. (2000). Students’ cellular and molecular explanations of genetic phenomena. Journal of Biological Education, 34(4), 200–205. doi: 10.1080/00219266.2000.9655718
  • Maret, T. J., & Rissing, S.W. (1998). Exploring genetic drift & natural selection through a simulation activity. The American Biology Teacher, 60(9), 681–683. doi: 10.2307/4450580
  • Mayring, P. (2000). Qualitative content analysis. Forum: Qualitative Social Research, 1(2), Art. 20. Retrieved from http://nbn-resolving.de/urn:nbn:de:0114-fqs0002204
  • Meir, E., Perry, J., Stal, D., Maruca, S., & Klopfer, E. (2005). How effective are simulated molecular-level experiments for teaching diffusion and osmosis? Cell Biology Education, 4(3), 235–248. doi: 10.1187/cbe.04-09-0049
  • Mills Shaw, K. R., Van Horne, K., Zhang, H., & Boughman, J. (2008). Essay contest reveals misconceptions of high school students in genetics content. Genetics, 178(3), 1157–1168. doi: 10.1534/genetics.107.084194
  • Nehm, R. H., & Ha, M. (2011). Item feature effects in evolution assessment. Journal of Research in Science Teaching, 48(3), 237–256. doi: 10.1002/tea.20400
  • Nehm, R. H., & Schonfeld, I. S. (2008). Measuring knowledge of natural selection: A comparison of the CINS, an open-response instrument, and an oral interview. Journal of Research in Science Teaching, 45(10), 1131–1160. doi: 10.1002/tea.20251
  • Nehm, R., & Reilly, L. (2007). Biology majors’ knowledge and misconceptions of natural selection. BioScience, 57(3), 263–272. doi: 10.1641/B570311
  • Nold, D. (2010). Sozioökonomischer Status von Schülerinnen und Schülern 2008 – Ergebnisse des Mikrozensus [Socioeconomic status of students 2008 – results of the microcensus]. Statistisches Bundesamt – Wirtschaft und Statistik, 2, 138–149.
  • Parker, J. M., Anderson, C. W., Heidemann, M., Merrill, M., Merritt, B., Richmond, G., & Urban-Lurain, M. (2012). Exploring undergraduates’ understanding of photosynthesis using diagnostic question clusters. CBE-Life Sciences Education, 11(1), 47–57. doi: 10.1187/cbe.11-07-0054
  • Penner, D. E. (2000). Explaining systems: Investigating middle school students’ understanding of emergent phenomena. Journal of Research in Science Teaching, 37(8), 784–806. doi: 10.1002/1098-2736(200010)37:8<784::AID-TEA3>3.0.CO;2-E
  • Prenzel, M., Artelt, C., Baumert, J., Blum, W., Hammann, M., Klieme, E., & Pekrun, R. (2007). PISA 2006 – Die Ergebnisse der dritten internationalen Vergleichsstudie [PISA 2006 – results of the third international comparative study]. Münster: Waxman.
  • Resnick, M. (1996). Beyond the centralized mindset. Journal of the Learning Sciences, 5(1), 1–22. doi: 10.1207/s15327809jls0501_1
  • Rutledge, M. L., & Warden, M. A. (2000). Evolutionary theory, the nature of science & high school biology teachers: Critical relationships. The American Biology Teacher, 62(1), 23–31. doi: 10.1662/0002-7685(2000)062[0023:ETTNOS]2.0.CO;2
  • Scheersoi, A., & Kullmann, H. (2007). Gendrift und Selektion spielerisch vermitteln [Playfully teaching genetic drift and selection]. Praxis der Naturwissenschaften - Biologie in der Schule, 56(7), 45–47.
  • Shtulman, A. (2006). Qualitative differences between naïve and scientific theories of evolution. Cognitive Psychology, 52, 170–194. doi: 10.1016/j.cogpsych.2005.10.001
  • Sinatra, G. M., & Mason, L. (2008). Beyond knowledge: Learner characteristics influencing conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 560–582). New York, NY: Routledge.
  • Sinatra, G. M., Southerland, S.A., Mc Conaughy, F., & Demastes, J. W. (2003). Intentions and beliefs in student’s understanding and acceptance of biological evolution. Journal of Research in Science Teaching, 40(5), 510–528. doi: 10.1002/tea.10087
  • Slack, S. J., & Stewart, J. (1990). High school students’ problem-solving performance on realistic genetics problems. Journal of Research in Science Teaching, 27(1), 55–67. doi: 10.1002/tea.3660270106
  • Smith, M. U., & Good, R. (1984). Problem solving and classical genetics: Successful versus unsuccessful performance. Journal of Research in Science Teaching, 21(9), 895–912. doi: 10.1002/tea.3660210905
  • Songer, C. J., & Mintzes, J. J. (1994). Understanding cellular respiration: An analysis of conceptual change in college biology. Journal of Research in Science Teaching, 31(6), 621–637. doi: 10.1002/tea.3660310605
  • Stavy, R., Eisen, Y., & Yaakobi, D. (1987). How students aged 13–15 understand photosynthesis. International Journal of Science Education, 9(1), 105–115. doi: 10.1080/0950069870090111
  • Stebbins, R. C., & Allen, B. (1975). Simulating evolution. The American Biology Teacher, 37, 206–211. doi: 10.2307/4445177
  • Tsui, C.-Y., & Treagust, D. F. (2010). Evaluating secondary students’ scientific reasoning in genetics using a two-tier diagnostic instrument. International Journal of Science Education, 32(8), 1073–1098. doi: 10.1080/09500690902951429
  • Tsui, C.-Y., Treagust, D. F. (2013). Introduction to multiple representations: Their importance in biology and biology education. In D. F. Treagust & C.-Y. Tsui (Eds.), Multiple representations in biology education (pp. 3–18). Dordrecht: Springer.
  • Verhoeff, R. P. (2003). Towards system-thinking in cell biology education. Utrecht: CD-ß-Press.
  • Verhoeff, R. P., Waarlo, A. J., & Boersma, K. T. (2008). Systems modelling and the development of coherent understanding of cell biology. International Journal of Science Education, 30(4), 543–568. doi: 10.1080/09500690701237780
  • Waheed, T., & Lucas, A. (1992). Understanding interrelated topics: Photosynthesis at age14+. Journal of Biological Education, 26(3), 193–199. doi: 10.1080/00219266.1992.9655272
  • Wallin, A. (2008). One year after teaching, how consistent are students in using the scientific theory of biological evolution by natural selection? In M. Hammann, M. Reiss, C. Boulter, & S. D. Tunnicliffe (Eds.), Biology in context: Learning and teaching for the twenty-first century. A selection of papers presented at the VIth conference of European Researchers in Didactics of Biology (ERIDOB) (pp. 52–63). London: Institute of Education.
  • White, P. J. T., Heidemann, M. K., & Smith, J. J. (2013). A new integrative approach to evolution education. BioScience, 63(7), 586–594. doi: 10.1525/bio.2013.63.7.11
  • Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems approach to making sense of the world. Journal of Science Education and Technology, 8(1), 3–19. doi: 10.1023/A:1009421303064
  • Wilson, C. D., Anderson, C. W., Heidemann, M., Merrill, J. E., Merritt, B. W., Richmond, G., … Parker, J. M. (2006). Assessing students’ ability to trace matter in dynamic systems in cell biology. CBE-Life Sciences Education, 5(4), 323–331. doi: 10.1187/cbe.06-02-0142

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.