1,600
Views
33
CrossRef citations to date
0
Altmetric
Articles

Students’ evaluations about climate change

, , &
Pages 1392-1414 | Received 07 Apr 2015, Accepted 22 May 2016, Published online: 16 Jun 2016

References

  • Bachelard, G. (1968). The philosophy of no: A philosophy of the new scientific mind. New York: The Orion Press.
  • Bencze, L., Sperling, E., & Carter, L. (2012). Students’ research-informed socio-scientific activism: Re/visions for a sustainable future. Research in Science Education, 42(1), 129–148. doi: 10.1007/s11165-011-9260-3
  • Braaten, M., & Windschitl, M. (2011). Working toward a stronger conceptualization of scientific explanation for science education. Science Education, 95(4), 639–669. doi:10.1002/sce.20449
  • Chin, C., & Osborne, J. (2010). Supporting argumentation through students’ questions: Case studies in science classrooms. Journal of the Learning Sciences, 19, 230–284. doi: 10.1080/10508400903530036
  • Chinn, C., & Brewer, W. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science education. Review of Educational Research, 63, 1–49. doi:10.3102/00346543063001001
  • Chinn, C. A., & Buckland, L. A. (2012). Model-based instruction: Fostering change in evolutionary conceptions and in epistemic practices. In K. S. Rosengren, E. M. Evans, S. Brem, & G. M. Sinatra (Eds.), Evolution challenges: Integrating research and practice in teaching and learning about evolution (pp. 211–232). New York, NY: Oxford University Press.
  • Choi, S., Niyogi, D., Shepardson, D. P., & Charusombat, U. (2010). Do Earth and environmental science textbooks promote middle and high school students’ conceptual development about climate change? Textbooks’ consideration of students’ misconceptions. Bulletin of the American Meteorological Society, 91, 889–898. doi:10.1175/2009BAMS2625.1
  • Christodoulou, A., & Osborne, J. (2014). The science classroom as a site of epistemic talk: A case study of a teacher's attempts to teach science based on argument. Journal of Research in Science Teaching, 51(10), 1275–1300. doi: 10.1002/tea.21166
  • Cook, J. (2010). Solar activity and climate: Is the sun causing global warming? Skeptical Science. Retrieved from http://www.skepticalscience.com
  • Darling-Hammond, L. (2010). Steady work: Finland builds a strong teaching and learning system. Rethinking Schools, 24(4), 30–35.
  • Dole, J. A., & Sinatra, G. M. (1998). Reconceptualizing change in the cognitive construction of knowledge. Educational Psychologist, 33, 109–128. doi:10.1207/s15326985ep3302&3_5
  • Doran, P. T., & Zimmerman, M. K. (2009). Examining the scientific consensus on climate change. EOS Transactions, 90, 22–23. doi: 10.1029/2009EO030002
  • Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young people’s images of science. Buckingham: Open University Press.
  • Duschl, R., & Grandy, R. (2011). Demarcation in science education: Toward an enhanced view of scientific method. In R. Taylor, & M. Ferrari (Eds.), Epistemology and science education: Understanding the evolution vs. intelligent design controversy (pp. 3–19). New York, NY: Routledge.
  • Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academies Press.
  • Eisinga, R., Grotenhuis, M. T., & Pelzer, B. (2012). The reliability of a two-item scale: Pearson, Cronbach, or Spearman-Brown? International Journal of Public Health. Advance online publication. doi:10.1007/s00038-012-0416-3
  • Ellis, B. (2009). NASA study shows sun responsible for planet warming. Dakota Voice. Retrieved February 4, 2011, from http://www.dakotavoice.com/2009/06/nasa-study-shows-sun-responsible-for-planet-warming/.
  • Erduran, S., & Dagher, Z. R. (2014). Scientific knowledge. In Ch. 6, Reconceptualizing the nature of science for science education (pp. 113–135). Dordrecht, Netherlands: Springer.
  • Erduran, S., & Msimanga, A. (2014). Science curriculum reform in South Africa: Lessons for professional development from research on argumentation in science education. Education as Change, 18, S33–S46. doi: 10.1080/16823206.2014.882266
  • Erduran, S., Simon, S., & Osborne, J. (2004). Tapping into argumentation: Developments in the application of Toulmin's argument pattern for studying science discourse. Science Education, 88(6), 915–933. doi: 10.1002/sce.20012
  • George, D., & Mallery, P. (2009). SPSS for Windows step by step: A simple guide and reference: 16.0 update. Boston, MA: Pearson Education.
  • Giere, R., Bickle, J., & Mauldin, R. F. (2006). Understanding scientific reasoning (5th ed.). Belmont, CA: Thomson Wadsworth.
  • Gray, R., & Kang, N. H. (2014). The structure of scientific arguments by secondary science teachers: Comparison of experimental and historical science topics. International Journal of Science Education, 36(1), 46–65. doi: 10.1080/09500693.2012.715779
  • Harman, G. H. (1965). The inference to the best explanation. The Philosophical Review, 74(1), 88–95. doi: 10.2307/2183532
  • Hogan, K., & Maglienti, M. (2001). Comparing the epistemological underpinnings of students’ and scientists’ reasoning about conclusions. Journal of Research in Science Teaching, 38(6), 663–687. doi: 10.1002/tea.1025
  • Intergovernmental Panel on Climate Change. (2007). Climate change 2007: Synthesis report—Summary for policymakers. Geneva: World Meteorological Organization.
  • Jiménez-Aleixandre, M. P., & Erduran, S. (2007). Argumentation in science education: An overview. In M. P. Jiménez-Aleixandre, & S. Erduran (Eds.), Argumentation in science education (pp. 3–27). Dordrecht, Netherlands: Springer.
  • Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness (Vol. 6). Boston, MA: Harvard University Press.
  • King, P. M., & Kitchener, K. S. (2004). Reflective judgment: Theory and research on the development of epistemic assumptions through adulthood. Educational Psychologist, 39, 5–18. doi: 10.1207/s15326985ep3901_2
  • Kuhn, D. (1999). A developmental model of critical thinking. Educational Researcher, 28(2), 16–46. doi: 10.3102/0013189X028002016
  • Kuhn, D., & Pearsall, S. (2000). Developmental origins of scientific thinking. Journal of Cognition and Development, 1, 113–129. doi: 10.1207/S15327647JCD0101N_11
  • Kulatunga, U., Moog, R. S., & Lewis, J. E. (2013). Argumentation and participation patterns in general chemistry peer-led sessions. Journal of Research in Science Teaching, 50(10), 1207–1231. doi: 10.1002/tea.21107
  • Kunda, Z. (1990). The case for motivated reasoning. Psychological Bulletin, 108, 480–498. doi: 10.1037/0033-2909.108.3.480
  • Lakatos, I. (1970). History of science and its rational reconstructions. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1970, 91–136.
  • Lederman, N. G. (1999). Teachers’ understanding of the nature of science and classroom practice: Factors that facilitate or impede the relationship. Journal of Research in Science Teaching, 36, 916–929. doi: 10.1002/(SICI)1098-2736(199910)36:8<916::AID-TEA2>3.0.CO;2-A
  • Leiserowitz, A., & Smith, N. (2010). Knowledge of climate change across global warming’s six Americas. Yale University. New Haven, CT: Yale Project on Climate Change Communication.
  • Lombardi, D., Nussbaum, E. M., & Sinatra, G. M. (2016). Plausibility judgments in conceptual change and epistemic cognition. Educational Psychologist, 51(1), 35–56. doi:10.1080/00461520.2015.1113134
  • Lombardi, D., & Sinatra, G. M. (2012). College students’ perceptions about the plausibility of human-induced climate change. Research in Science Education, 42, 201–217. doi:10.1007/s11165-010-9196-z
  • Lombardi, D., & Sinatra, G. M. (2013). Emotions about teaching about human-induced climate change. International Journal of Science Education, 35, 167–191. doi:10.1080/09500693.2012.738372
  • Lombardi, D., Sinatra, G. M., & Nussbaum, E. M. (2013). Plausibility reappraisals and shifts in middle school students’ climate change conceptions. Learning and Instruction, 27, 50–62. doi:10.1016/j.learninstruc.2013.03.001
  • Mason, L., Ariasi, N., & Boldrin, A. (2011). Epistemic beliefs in action: Spontaneous reflections about knowledge and knowing during online information searching and their influence on learning. Learning and Instruction, 21(1), 137–151. doi: 10.1016/j.learninstruc.2010.01.001
  • McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting students’ construction of scientific explanations by fading Scaffolds in instructional materials. Journal of the Learning Sciences, 15, 153–191. doi:10.1207/s15327809jls1502_1
  • Meyer, A. A., & Lederman, N. G. (2013). Inventing creativity: An exploration of the pedagogy of ingenuity in science classrooms. School Science and Mathematics, 113(8), 400–409. doi: 10.1111/ssm.12039
  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
  • Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 5–22). New York, NY: Kluwer Academic/Plenum Publishers.
  • Nersessian, N. J. (2008). Creating scientific concepts. Cambridge, MA: MIT Press.
  • NGSS Lead States. (2013). Next generation science standards: For states by states. Volume 1: The standards. Washington, DC: The National Academies Press.
  • Nussbaum, E. M. (2008). Collaborative discourse, argumentation, and learning: Preface and literature review. Contemporary Educational Psychology, 33, 345–359. doi: 10.1016/j.cedpsych.2008.06.001
  • Nussbaum, E. M. (2011). Argumentation, dialogue theory, and probability modeling: Alternative frameworks for argumentation research in education. Educational Psychologist, 46, 84–106. doi: 10.1080/00461520.2011.558816
  • Nussbaum, E. M., & Edwards, O. V. (2011). Critical questions and argument stratagem: A framework for enhancing and analyzing students’ reasoning practices. Journal of the Learning Sciences, 20, 443–488. doi: 10.1080/10508406.2011.564567
  • Nussbaum, E. M., & Kardash, C. A. (2005). The effects of goal instructions and text on the generation of counterarguments during writing. Journal of Educational Psychology, 97, 157–169. doi: 10.1037/0022-0663.97.2.157
  • Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328, 463–466. doi: 10.1126/science.1183944
  • Osborne, J. (2012). The role of argument: Learning how to learn in school science. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second International handbook of science education (pp. 933–949). New York, NY: Springer International.
  • Peters, E. E. (2012). Developing content knowledge in students through explicit teaching of the nature of science: Influences of goal setting and self-monitoring. Science & Education, 21(6), 881–898. doi: 10.1007/s11191-009-9219-1
  • Peters, E., & Kitsantas, A. (2010). The effect of nature of science Metacognitive prompts on science Students’ content and nature of science knowledge, metacognition, and self-regulatory efficacy. School Science and Mathematics, 110(8), 382–396. doi: 10.1111/j.1949-8594.2010.00050.x
  • Petty, R. E., & Cacioppo, J. T. (1986). The elaboration likelihood model of persuasion. In L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 19, pp. 123–205). New York, NY: Academic.
  • Pluta, W. J., Chinn, C. A., & Duncan, R. G. (2011). Learners’ epistemic criteria for good scientific models. Journal of Research in Science Teaching, 48(5), 486–511. doi:10.1002/tea.20415
  • Popper, K. (1963). Conjectures and refutations. London: Routledge.
  • Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211–227. doi: 10.1002/sce.3730660207
  • Sinatra, G. M., & Chinn, C. A. (2011). Thinking and reasoning in science: Promoting epistemic conceptual change. In K. Harris, C. B. McCormick, G. M. Sinatra, & J. Sweller (Eds.), Educational psychology: Contributions to education (Vol. 1, pp. 257–282). Washington, DC: American Psychological Association.
  • Smith, M. J., Southard, J. B., & Mably, C. (2002). Investigating earth systems: Climate and weather: Teacher’s edition. Armonk, NY: It’s About Time.
  • Stanovich, K. E. (2007). How to think straight about psychology. Boston, MA: Allyn and Bacon, Pearson Education.
  • Stemler, S. (2001). An overview of content analysis. Practical Assessment, Research & Evaluation, 7(17). Retrieved December 2, 2014 from http://PAREonline.net/getvn.asp?v=7&n=17
  • Taber, C. S., & Lodge, M. (2006). Motivated skepticism in the evaluation of political beliefs. American Journal of Political Science, 50(3), 755–769. doi: 10.1111/j.1540-5907.2006.00214.x
  • Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.
  • Walton, D. N. (2004). Abductive reasoning. Tuscaloosa: The University of Alabama Press.
  • Walton, D. N. (2007). Dialogue theory for critical argumentation. Philadelphia, PA: John Benjamins.
  • Wang, C. Y. (2015). Scaffolding middle school students’ construction of scientific explanations: Comparing a cognitive versus a metacognitive evaluation approach. International Journal of Science Education, 37(2), 237–271. doi: 10.1080/09500693.2014.979378
  • Zohar, A. (2007). Science teacher education and professional development in argumentation. In M. P. Jiménez-Aleixandre, & S. Erduran (Eds.), Argumentation in science education (pp. 245–268). Dordrecht, Netherlands: Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.