1,108
Views
17
CrossRef citations to date
0
Altmetric
Articles

Do sophisticated epistemic beliefs predict meaningful learning? Findings from a structural equation model of undergraduate biology learning

, &
Pages 2327-2345 | Received 08 Aug 2015, Accepted 20 Sep 2016, Published online: 24 Oct 2016

References

  • Bahcivan, E. (2014). Examining relationships among Turkish preservice science teachers’ conceptions of teaching and learning, scientific epistemological beliefs and science teaching efficacy beliefs. Journal of Baltic Science Education, 13(6), 870–882.
  • Belmont, J. M., Butterfield, E. C., & Ferretti, R. P. (1982). To secure transfer of training: Instruct self-management skills. In D. K. Detterman & R. J. Sternberg (Eds.), How and how much can intelligence be increased? (pp. 147–154). Norwood, NJ: Ablex.
  • Biggs, J. B. (1987). Student approaches to learning and studying. Research monograph. Hawthorn: Australian Council for Educational Research.
  • Biggs, J. B. (1994). Approaches to learning: Nature and measurement of. The International Encyclopedia of Education, 1, 319–322.
  • Borkowski, J. G., Carr, M., Rellinger, E. A., & Pressley, M. (1990). Self-regulated strategy use: Interdependence of metacognition, attributions, and self-esteem. In B. F. Jones (Ed.), Dimensions of thinking: Review of research (pp. 53–92). Hilldale, NJ: Lawrence Erlbaum Associates.
  • Bråten, I. (2010). Personal epistemology in education: Concepts, issues, and implications. In Penelope Peterson, Eva Baker, & B. McGaw (Eds.), International encyclopedia of education (3rd ed., pp. 211–217). Oxford: Elsevier Science Limited.
  • Bråten, I., Ferguson, L. E., Strømsø, H. I., & Anmarkrud, Ø. (2014). Students working with multiple conflicting documents on a scientific issue: Relations between epistemic cognition while reading and sourcing and argumentation in essays. British Journal of Educational Psychology, 84(1), 58–85. doi:10.1111/bjep.12005
  • Buehl, M. M., Alexander, P. A., & Murphy, P. K. (2002). Beliefs about schooled knowledge: Domain specific or domain general? Contemporary Educational Psychology, 27(3), 415–449. doi:10.1006/ceps.2001.1103
  • Burkell, J., Schneider, B., & Pressley, M. (1990). Mathematics. In M. Pressley & Associates (Eds.), Cognitive strategy instruction that really improves children’s academic performance (pp. 147–177). Cambridge, MA: Brookline Books.
  • Cano, F., & Cardelle-Elawar, M. (2004). An integrated analysis of secondary school students’ conceptions and beliefs about learning. European Journal of Psychology of Education, 19(2), 167–187. doi:10.1007/BF03173230
  • Chen, J. A. (2012). Implicit theories, epistemic beliefs, and science motivation: A person-centered approach. Learning and Individual Differences, 22(6), 724–735. doi:10.1016/j.lindif.2012.07.013
  • Chen, J. A., & Pajares, F. (2010). Implicit theories of ability of Grade 6 science students: Relation to epistemological beliefs and academic motivation and achievement in science. Contemporary Educational Psychology, 35(1), 75–87. doi:10.1016/j.cedpsych.2009.10.003
  • Cheung, D. (2015). The combined effects of classroom teaching and learning strategy use on students’ chemistry self-efficacy. Research in Science Education, 45(1), 101–116. doi:10.1007/s11165014-9415-0
  • Chin, C., & Brown, D. E. (2000). Learning in science: A comparison of deep and surface approaches. Journal of Research in Science Teaching, 37(2), 109–138. doi:10.1002/(SICI)1098-2736(200002)37:2<109::AID-TEA3>3.0.CO;2-7
  • Chinn, C. A., Buckland, L. A., & Samarapungavan, A. (2011). Expanding the dimensions of epistemic cognition: Arguments from philosophy and psychology. Educational Psychologist, 46(3), 141–167. doi: 10.1080/00461520.2011.587722
  • Chiou, G.-L., & Liang, J.-C. (2012). Exploring the structure of science self-efficacy: A model built on high school students’ conceptions of learning and approaches to learning in science. The Asia-Pacific Education Researcher, 21(1), 83–91.
  • Chiou, G.-L., Liang, J.-C., & Tsai, C.-C. (2012). Undergraduate students’ conceptions of and approaches to learning in biology: A study of their structural models and gender differences. International Journal of Science Education, 34(2), 167–195. doi:10.1080/09500693.2011.558131
  • Chiu, C. M., Hsu, M. H., & Wang, E. T. (2006). Understanding knowledge sharing in virtual communities: An integration of social capital and social cognitive theories. Decision Support Systems, 42(3), 1872–1888. doi: 10.1016/j.dss.2006.04.001
  • Clinton, V. (2014). The relationship between students’ preferred approaches to learning and behaviors during learning: An examination of the process stage of the 3P model. Instructional Science, 42, 817–837. doi: 10.1007/s11251-013-9308-z
  • Conley, A. M., Pintrich, P. R., Vekiri, I., & Harrison, D. (2004). Changes in epistemological beliefs in elementary science students. Contemporary Educational Psychology, 29(2), 186–204. doi:10.1016/j.cedpsych.2009.10.003
  • Deniz, H. (2011). Searching for components of conceptual ecology that mediate development of epistemological beliefs in science. Journal of Science Education and Technology, 20(6), 743–749. doi:10.1007/s10956-010-9267-y
  • Ding, L. (2014). Verification of causal influences of reasoning skills and epistemology on physics conceptual learning. Physical Review Special Topics Physics Education Research, 10, 023101–023105. doi:10.1103/PhysRevSTPER.10.023101
  • Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38(1), 39–72. doi: 10.1080/03057260208560187
  • Elby, A., & Hammer, D. (2001). On the substance of a sophisticated epistemology. Science Education, 85(5), 554567. doi: 10.1002/sce.1023
  • Elby, A., Macrander, C., & Hammer, D. (2016). Epistemic cognition in science. In J. A. Greene, W. A. Sandoval, & I. Bråten (Eds.), Handbook of epistemic cognition (pp. 113–127). New York, NY: Routledge.
  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18, 39–50. doi: 10.2307/3151312
  • Fulmer, G. W. (2014). Undergraduates’ attitudes toward science and their epistemological beliefs: Positive effects of certainty and authority beliefs. Journal of Science Education and Technology, 23(1), 198–206. doi:10.1007/s10956-013-9463-7
  • Greene, J. A., Sandoval, W. A., & Bråten, I. (2016). An introduction to epistemic cognition. In J. A. Greene, W. A. Sandoval, & I. Bråten (Eds.), Handbook of epistemic cognition (pp. 1–15). New York: NY: Routledge.
  • Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis. Upper Saddle River, NJ: Prentice Hall.
  • Hofer, B. K. (2000). Dimensionality and disciplinary differences in personal epistemology. Contemporary Educational Psychology, 25(4), 378–405. doi:10.1006/ceps.1999.1026
  • Hofer, B. K. (2004). Exploring the dimensions of personal epistemology in differing classroom contexts: Student interpretations during the first year of college. Contemporary Educational Psychology, 29(2), 129–163. doi:10.1016/j.cedpsych.2004.01.002
  • Hofer, B. K. (2006). Domain specificity of personal epistemology: Resolved questions, persistent issues, new models. International Journal of Educational Research, 45(1–2), 85–95. doi: 10.1016/j.ijer.2006.08.006
  • Hofer, B. K. (2016). Epistemic cognition as a psychological construct: Advancements and challenges. In J. A. Greene, W. A. Sandoval, & I. Bråten (Eds.), Handbook of epistemic cognition (pp. 19–38). New York: NY: Routledge.
  • Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67(1), 88–140. doi: 10.3102/00346543067001088
  • Hsieh, Y.-H., & Tsai, C.-C. (2014). Students’ scientific epistemic beliefs, online evaluative standards, and online searching strategies for science information: The moderating role of cognitive load experience. Journal of Science Education and Technology, 23(3), 299–308. doi:10.1007/s10956-013-9464-6
  • Hsu, C.-Y., Tsai, M.-J., Hou, H.-T., & Tsai, C.-C. (2014). Epistemic beliefs, online search strategies, and behavioral patterns while exploring socioscientific issues. Journal of Science Education and Technology, 23(3), 471–480. doi:10.1007/s10956-013-9477-1
  • Jiménez-Aleixandre, M. P. (2014). Determinism and underdetermination in genetics: Implications for students’ engagement in argumentation and epistemic practices. Science & Education, 23(2), 465–484. doi:10.1007/s11191-012-9561-6
  • Jöreskog, K., & Sörbom, D. (1993). LISREL 8: Structural equation modeling with the SIMPLIS command language. Chicago, IL: Scientific Software International Inc.
  • Kember, D., Biggs, J., & Leung, D. Y. P. (2004). Examining the multidimensionality of approaches to learning through the development of a revised version of the learning process questionnaire. British Journal of Educational Psychology, 74(2), 261–279. doi:10.1348/000709904773839879
  • Kizilgunes, B., Tekkaya, C., & Sungur, S. (2009). Modeling the relations among students’ epistemological beliefs, motivation, learning approach, and achievement. The Journal of Educational Research, 102(4), 243–256. doi:10.3200/JOER.102.4.243-256
  • Kuhn, D., & Udell, W. (2003). The development of argument skills. Child Development, 74, 1245–1260. doi: 10.1111/1467-8624.00605
  • Lee, M.-H., Johanson, R. E., & Tsai, C.-C. (2008). Exploring Taiwanese high school students’ conceptions of and approaches to learning science through a structural equation modeling analysis. Science Education, 92(2), 191–220. doi:10.1002/sce.20245
  • Lee, S. W.-Y., & Tsai, C.-C. (2012). Students’ domain-specific scientific epistemological beliefs: A comparison between biology and physics. The Asia-Pacific Education Researcher, 21(2), 215–229.
  • Li, W.-T., Liang, J.-C., & Tsai, C.-C. (2013). Relational analysis of college chemistry-major students’ conceptions of and approaches to learning chemistry. Chemistry Education Research and Practice, 14(4), 555–565. doi:10.1039/C3RP00034F
  • Liang, J.-C., Lee, M.-H., & Tsai, C.-C. (2010). The relations between scientific epistemological beliefs and approaches to learning science among science-major undergraduates in Taiwan. The Asia-Pacific Education Researcher, 19(1), 43–59.
  • Liang, J.-C., & Tsai, C.-C. (2010). Relational analysis of college science-major students’ epistemological beliefs toward science and conceptions of learning science. International Journal of Science Education, 32(17), 2273–2289. doi:10.1080/09500690903397796
  • Lin, T.-J., Deng, F., Chai, C. S., & Tsai, C.-C. (2013). High school students’ scientific epistemological beliefs, motivation in learning science, and their relationships: A comparative study within the Chinese culture. International Journal of Educational Development, 33(1), 37–47. doi:10.1016/j.ijedudev.2012.01.007
  • Lin, Y.-C., Liang, J.-C., & Tsai, C.-C. (2012a). The relationships between epistemic beliefs in biology and approaches to learning biology among biology-major university students in Taiwan. Journal of Science Education and Technology, 21(6), 796–807. doi:10.1007/s10956-012-9367-y
  • Lin, Y.-H., Liang, J.-C., & Tsai, C.-C. (2012b). Effects of different forms of physiology instruction on the development of students’ conceptions of and approaches to science learning. AJP: Advances in Physiology Education, 36(1), 42–47. doi:10.1152/advan.00118.2011
  • Lising, L., & Elby, A. (2005). The impact of epistemology on learning: A case study from introductory physics. American Journal of Physics, 73(4), 372–382. doi:10.1119/1.1848115
  • Marton, F., Dall’ Alba, G., & Beaty, E. (1993). Conceptions of learning. International Journal of Educational Research, 19, 277–300.
  • Marton, F., & Säljö, R. (1976). On qualitative differences in learning: I – outcome and process. British Journal of Educational Psychology, 46(1), 4–11. doi:10.1111/j.2044-8279.1976.tb02980.x
  • Mason, L., Ariasi, N., & Boldrin, A. (2011). Epistemic beliefs in action: Spontaneous reflections about knowledge and knowing during online information searching and their influence on learning. Learning and Instruction, 21(1), 137–151. doi:10.1016/j.learninstruc.2010.01.001
  • Muis, K. R. (2008). Epistemic profiles and self-regulated learning: Examining relations in the context of mathematics problem solving. Contemporary Educational Psychology, 33(2), 177–208. doi: 10.1016/j.cedpsych.2006.10.012
  • Muis, K. R., Trevors, G., & Chevrier, M. (2016). Epistemic climate for epistemic change. In J. A. Greene, W. A. Sandoval, & I. Bråten (Eds.), Handbook of epistemic cognition (pp. 331–358). New York, NY: Routledge.
  • Murphy, P. K., & Mason, L. (2006). Changing knowledge and beliefs. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (pp. 305–324). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Ozkal, K., Tekkaya, C., Cakiroglu, J., & Sungur, S. (2009). A conceptual model of relationships among constructivist learning environment perceptions, epistemological beliefs, and learning approaches. Learning and Individual Differences, 19(1), 71–79. doi:10.1016/j.lindif.2008.05.005
  • Paulsen, M. B., & Wells, C. T. (1998). Domain differences in the epistemological beliefs of college students. Research in Higher Education, 39(4), 365–384. doi:10.1023/A:1018785219220
  • Pressley, M., & Harris, K. R. (2006). Cognitive strategies instruction: From basic research to classroom instruction. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (pp. 265–286). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Retzbach, A., Marschall, J., Rahnke, M., Otto, L., & Maier, M. (2011). Public understanding of science and the perception of nanotechnology: The roles of interest in science, methodological knowledge, epistemological beliefs, and beliefs about science. Journal of Nanoparticle Research, 13(12), 6231–6244. doi:10.1007/s11051-011-0582-x
  • Säljö, R. (1979). Learning in the learner’s perspective. I. Some common-sense conceptions. Sweden: Institute of Education, University of Göteborg.
  • Sampson, V., & Schleigh, S. (2013). Scientific argumentation in biology: 30 classroom activities. Arlington, VA: National Science Teachers Association – NSTA Press.
  • Sandoval, W. A., & Reiser, B. J. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88(3), 345–372. doi:10.1002/sce.10130
  • Schommer, M. (1990). Effects of beliefs about the nature of knowledge on comprehension. Journal of Educational Psychology, 82(3), 498–504. doi:10.1037/0022-0663.82.3.498
  • Schunk, D. H., & Zimmerman, B. J. (2006). Competence and control beliefs: Distinguishing the means and ends. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (pp. 349–367). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Tsai, C.-C. (1998). An analysis of scientific epistemological beliefs and learning orientations of Taiwanese eighth graders. Science Education, 82(4), 473–489. doi: 10.1002/(SICI)1098-237X(199807)82:4<473::AID-SCE4>3.0.CO;2-8
  • Tsai, C.-C. (1999). “Laboratory exercises help me memorize the scientific truths”: A study of eighth graders’ scientific epistemological views and learning in laboratory activities. Science Education, 83(6), 654–674. doi: 10.1002/(SICI)1098-237X(199911)83:6<654::AID-SCE2>3.0.CO;2-Y
  • Tsai, C.-C. (2004). Conceptions of learning science among high school students in Taiwan: A phenomenographic analysis. International Journal of Science Education, 26(14), 1733–1750. doi:10.1080/0950069042000230776
  • Tsai, C.-C. (2006). Biological knowledge is more tentative than physics knowledge: Taiwan high school adolescents’ views about the nature of biology and physics. Adolescence, 41(164), 691–703.
  • Tsai, C.-C., Ho, H. N. J., Liang, J.-C., & Lin, H.-M. (2011). Scientific epistemic beliefs, conceptions of learning science and self-efficacy of learning science among high school students. Learning and Instruction, 21(6), 757–769. doi:10.1016/j.learninstruc.2011.05.002
  • Vos, N., van der Meijden, H., & Denessen, E. (2011). Effects of constructing versus playing an educational game on student motivation and deep learning strategy use. Computers & Education, 56(1), 127–137. doi: 10.1016/j.compedu.2010.08.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.