1,052
Views
16
CrossRef citations to date
0
Altmetric
Articles

Evaluation of diagnostic tools that tertiary teachers can apply to profile their students’ conceptions

, , , , , , , , & show all
Pages 565-586 | Received 08 Jul 2016, Accepted 15 Feb 2017, Published online: 21 Mar 2017

References

  • Adams, W. K., & Wieman, C. E. (2011). Development and validation of instruments to measure learning of expert-like thinking. International Journal of Science Education, 33, 1289–1312. doi:10.1080/09500693.2010.512369
  • Arjoon, J. A., Xu, X., & Lewis, J. E. (2013). Understanding the state of the art for measurement in chemistry education research: Examining the psychometric evidence. Journal of Chemical Education, 90, 536–545. doi:10.1021/ed3002013
  • Ausubel, D. P. (1968). Educational psychology: A cognitive view. New York, NY: Holt, Rinehart & Winston.
  • Barbera, J. (2013). A psychometric analysis of the chemical concepts inventory. Journal of Chemical Education, 90, 546–553. doi:10.1021/ed3004353
  • de Berg, K. (2011). A study of first-year chemistry students’ understanding of solution concentration at the tertiary level. Chemistry Education Research and Practice, 13, 8–16. doi:10.1039/c1rp90056k
  • Bergquist, W., & Heikkinen, H. (1990). Student ideas regarding chemical equilibrium: What written test answers do not reveal. Journal of Chemical Education, 67, 1000–1003. doi:10.1021/ed067p1000
  • Biggs, J. (1993). What do inventories of students’s learning processes really measure? A theoretical review and clarification. British Journal of Educational Psychology, 63, 3–19. doi:10.1111/j.2044-8279.1993.tb01038.x
  • Bodner, G. M. (1991). I have found you an argument: The conceptual knowledge of beginning chemistry graduate students. Journal of Chemical Education, 68, 385–388. doi:10.1021/ed068p385
  • Brandriet, A. R., & Bretz, S. L. (2014). The development of the redox concept inventory as a measure of students’ symbolic and particulate redox understandings and confidence. Journal of Chemical Education, 91, 1132–1144. doi:10.1021/ed500051n
  • Bridle, C. A., & Yezierski, E. J. (2012). Evidence for the effectiveness of inquiry-based, particulate-level instruction on conceptions of the particulate nature of matter. Journal of Chemical Education, 89, 192–198. doi:10.1021/ed100735u
  • Briggs, D. C., Alonzo, A. C., Schwab, C., & Wilson, M. (2006). Diagnostic assessment with ordered multiple-choice items. Educational Assessment, 11, 33–63. doi:10.1207/s15326977ea1101_2
  • Chu, H.-E., Treagust, D. F., Yeo, S., & Zadnik, M. (2012). Evaluation of students’ understanding of thermal concepts in everyday contexts. International Journal of Science Education, 34, 1509–1534. doi:10.1080/09500693.2012.657714
  • Cook, M., Wiebe, E. N., & Carter, G. (2008). The influence of prior knowledge on viewing and interpreting graphics with macroscopic and molecular representations. Science Education, 92, 848–867. doi:10.1002/sce.20262
  • Coştu, B., Ayas, A., & Niaz, M. (2010). Promoting conceptual change in first year students’ understanding of evaporation. Chemistry Education Research and Practice, 11, 5–16. doi:10.1039/C001041N
  • Crisp, V., & Sweiry, E. (2006). Can a picture ruin a thousand words? The effects of visual resources in exam questions. Educational Research, 48, 139–154. doi:10.1080/00131880600732249
  • Devetak, I., Vogrinc, J., & Glažar, S. A. (2009). Assessing 16-year-old students’ understanding of aqueous solution at submicroscopic level. Research in Science Education, 39, 157–179. doi:10.1007/s11165-007-9077-2
  • Dickson, H., Thompson, C. D., & O'Toole, P. (2016). A picture is worth a thousand words: Investigating first year chemistry students’ ability to visually express their understanding of chemistry concepts. International Journal of Innovation in Science and Mathematics Education, 24, 12–23.
  • Driver, R., & Erickson, G. (1983). Theories-in-action: Some theoretical and empirical issues in the study of students’ conceptual frameworks in science. Studies in Science Education, 10, 37–60. doi:10.1080/03057268308559904
  • Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25, 671–688. doi:10.1080/09500690305016
  • Duit, R., & Treagust, D. F. (2012). How can conceptual change contribute to theory and practice in science education?. In B. J. Fraser, K. G. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 107–118). Dordrecht: Springer Science+Business Media.
  • Gess-Newsome, J. (2015). A model of teacher professional knowledge and skill including PCK: Results of the thinking from the PCK summit. In A. Berry, P. Friedrichsen, & J. Loughran (Eds.), Re-examining pedagogical content knowledge in science education (pp. 28–42). New York, NY: Routledge.
  • Gliem, J. S., & Gliem, R. R. (2003). Calculating, interpreting, and reporting Cronbach’s alpha reliability coefficient for likert-type scales. Paper presented at the 2003 Midwest Research to Practice Conference in Adult, Continuing, and Community Education, Columbus, Ohio.
  • Hackling, M. W., & Garnett, P. J. (1985). Misconceptions of chemical equilibrium. European Journal of Science Education, 7, 205–214. doi: 10.1080/0140528850070211
  • Hadenfeldt, J. C., Bernholt, S., Liu, X., Neumann, K., & Parchmann, I. (2013). Using ordered multiple-choice items to assess students’ understanding of the structure and composition of matter. Journal of Chemical Education, 90, 1602–1608. doi:10.1021/ed3006192
  • Haladyna, T. M., & Downing, S. M. (1989). Validity of a taxonomy of multiple-choice item-writing rules. Applied Measurement in Education, 2, 51–78. doi: 10.1207/s15324818ame0201_4
  • Haladyna, T. M., Downing, S. M., & Rodriguez, M. C. (2002). A review of multiple-choice item-writing guidelines for classroom assessment. Applied Measurement in Education, 15, 309–333. doi:10.1207/S15324818AME1503_5
  • Hand, B. M., & Treagust, D. F. (1988). Application of a conceptual conflict teaching strategy to enhance student learning of acids and bases. Research in Science Education, 18, 53–63. doi:10.1007/BF02356580
  • Jansoon, N., Coll, R. K., & Somsook, E. (2009). Understanding mental models of dilution in Thai students. International Journal of Environmental & Science Education, 4, 147–168.
  • Johnson, P. (1998). Children’s understanding of changes of state involving the gas state, part 1: Boiling water and the particle theory. International Journal of Science Education, 20, 567–583. doi:10.1080/0950069980200505
  • Johnstone, A. H. (1983). Chemical education research: Facts, findings, consequences. Journal of Chemical Education, 60, 968–971. doi:10.1021/ed060p968
  • Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7, 75–83. doi:10.1111/j.1365-2729.1991.tb00230.x
  • Johnstone, A. H. (2010). You can’t get there from here. Journal of Chemical Education, 87, 22–29. doi:10.1021/ed800026d
  • Kahveci, A. (2013). Diagnostic assessment of student understanding of the particulate nature of matter: Decades of research. In G. Tsaparlis, & H. Sevian (Eds.), Concepts of matter in science education (pp. 249–278). Dordrecht: Springer Science+Business Media.
  • Kind, V. (2004). Beyond appearances: Students’ misconceptions about basic chemical ideas (2nd ed.). Royal Society of Chemistry: London.
  • Kirbulut, Z. D., & Beeth, M. E. (2013). Consistency of students’ ideas across evaporation, condensation, and boiling. Research in Science Education, 43, 209–232. doi:10.1007/s11165-011-9264-z
  • Krause, S., Birk, J., Bauer, R., Jenkins, B., & Pavelich, M. J. (2004). Development, testing and application of a chemistry concept inventory. Paper presented at the 34th ASEE/IEEE frontiers in education conference, Savannah, Georgia, USA.
  • Krnel, D., Watson, R., & Glažar, S. A. (2005). The development of the concept of ‘matter’: A cross-age study of how children describe materials. International Journal of Science Education, 27, 367–383. doi:10.1080/09500690412331314441
  • Kruse, R. A., & Roehrig, G. H. (2005). A comparison study: Assessing teachers’ conceptions with the chemistry concepts inventory. Journal of Chemical Education, 82, 1246–1250. doi:10.1021/ed082p1246
  • Lawrie, G. A., Schultz, M., Bailey, C. H., Mamun, A. A., Micallef, A. S., Williams, M., & Wright, A. H. (2016). Development of scaffolded online modules to support self-regulated learning in chemistry concepts. In M. Schultz, T. A. Holme, & S. Schmid (Eds.), Technology and assessment strategies for improving student learning in chemistry (pp. 1–21). Washington, DC: American Chemical Society.
  • Lawrie, G. A., Schultz, M., O'Brien, G., Tasker, R., Bedford, S. B., Dargaville, T. R., … Wright, A. H. (in preparation). Shared perspectives, strategies and an inter-institutional collaborative community in development of concept items.
  • Lawrie, G. A., Schultz, M., & Wright, A. H. (in review). Insights into students’ conceptions as they enter tertiary chemistry studies: A longitudinal study exploring the utility of concept inventories.
  • Lawrie, G., Wright, A. H., Schultz, M., Dargaville, T., O'Brien, G., Bedford, S., & Thompson, C. (2013). Using formative feedback to identify and support first-year chemistry students with missing or misconceptions. A practice report. International Journal of the First Year in Higher Education, 4, 111–116. doi:10.5204/intjfyhe.v4i2.179
  • Lawrie, G. A., Wright, A., Schultz, M., Dargaville, T., Tasker, R., Williams, M., & Thompson, C. (2015). Closing the loop: A model for inter-institutional collaboration through delivering formative assessment in large, first-year stem classes. In G. Weaver, W. D. Burgess, A. L. Childress, & L. Slakey (Eds.), Transforming institutions: Undergraduate stem education for the 21st century (pp. 399–410). Purdue, IN: Purdue University Press.
  • Lewis, E. L., & Linn, M. C. (1994). Heat energy and temperature concepts of adolescents, adults, and experts: Implications for curricular improvements. Journal of Research in Science Teaching, 31, 657–677. doi:10.1002/tea.3660310607
  • Luxford, C. J., & Bretz, S. L. (2014). Development of the bonding representations inventory to identify student misconceptions about covalent and ionic bonding representations. Journal of Chemical Education, 91, 312–320. doi:10.1021/ed400700q
  • McInnis, C., James, R., & McNaught, C. (1995). First year on campus: Diversity in the initial experiences of Australian undergraduates. Report for centre for the study of higher education, University of Melbourne (Canberra, Australia).
  • Mulford, D. R., & Robinson, W. R. (2002). An inventory for alternate conceptions among first-semester general chemistry students. Journal of Chemical Education, 79, 739–744. doi:10.1021/ed079p739
  • Murphy, K., Holme, T., Zenisky, A., Caruthers, H., & Knaus, K. (2012). Building the ACS exams anchoring concept content map for undergraduate chemistry. Journal of Chemical Education, 89, 715–720. doi:10.1021/ed300049w
  • Nicol, D. J., & Macfarlane-Dick, D. (2006). Formative assessment and self-regulated learning: A model and seven principles of good feedback practice. Studies in Higher Education, 31, 199–218. doi:10.1080/03075070600572090
  • Osborne, R. J., & Cosgrove, M. M. (1983). Children’s conceptions of the changes of state of water. Journal of Research in Science Teaching, 20, 825–838. doi:10.1002/tea.3660200905
  • Othman, J., Treagust, D. F., & Chandrasegaran, A. L. (2008). An investigation into the relationship between students’ conceptions of the particulate nature of matter and their understanding of chemical bonding. International Journal of Science Education, 30, 1531–1550. doi:10.1080/09500690701459897
  • Pavelich, M. J., Jenkins, B., Birk, J., Bauer, R., & Krause, S. (2004). Development of a chemistry concept inventory for use in chemistry, materials and other engineering courses. Paper presented at the American Society for Engineering Education annual conference and exposition, Salt Lake City, UT.
  • Pentecost, T. C., & Langdon, L. S. (2008). Development of a covalent bonding and molecular structure learning progression and concept inventory for first semester general chemistry. Paper presented at the 20th biennial conference on Chemical Education, Bloomington, Indiana.
  • Peterson, R. F., Treagust, D. F., & Garnett, P. (1989). Development and application of a diagnostic instrument to evaluate grade 11 and 12 students’ concepts of covalent bonding and structure following a course of instruction. Journal of Research in Science Teaching, 26, 301–314. doi:10.1002/tea.3660260404
  • Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211–227. doi:10.1002/sce.3730660207
  • Potgieter, M., & Davidowitz, B. (2011). Preparedness for tertiary chemistry: Multiple applications of the chemistry competence test for diagnostic and prediction purposes. Chemistry Education Research and Practice, 12, 193–204. doi:10.1039/C1RP90024B
  • Potgieter, M., Davidowitz, B., & Blom, B. (2005). Chemical concepts inventory of first year students at two tertiary institutions in South Africa. Paper presented at the conference of the South African association of Research in Mathematics, Science and Technology and Education, Namibia.
  • Potgieter, M., Davidowitz, B., & Venter, E. (2008). Assessment of preparedness of first-year chemistry students: Development and application of an instrument for diagnostic and placement purpose. African Journal of Research in SMT Education, Special Edition, 12, 1–18. doi:10.1080/10288457.2008.10740638
  • Prince, M., Vigeant, M., & Nottis, K. (2012). Development of the heat and energy concept inventory: Preliminary results on the prevalence and persistence of engineering students’ misconceptions. Journal of Engineering Education, 101, 412–438. doi:10.1002/j.2168-9830.2012.tb00056.x
  • Rasch, G. (1993). Probabilistic models for some intelligence and attainment tests. Chicago, IL: MESA Press.
  • Sadler, P. M. (1998). Psychometric models of student conceptions in science: Reconciling qualitative studies and distractor-driven assessment instruments. Journal of Research in Science Teaching, 35, 265–296. doi:10.1002/(SICI)1098-2736(199803)35:3<265::AID-TEA3>3.0.CO;2-P
  • Schmidt, H.-J. (1997). Students’ misconceptions – looking for a pattern. Science Education, 81, 123–135. doi:10.1002/(SICI)1098-237X(199704)81:2<123::AID-SCE1>3.0.CO;2-H
  • Schwartz, P., & Barbera, J. (2014). Evaluating the content and response process validity of data from the chemical concepts inventory. Journal of Chemical Education, 91, 630–640. doi:10.1021/ed400716p
  • diSessa, A. A. (1988). Knowledge in pieces. In G. Forman & P. B. Pufall (Eds.), Constructivism in the computer age (pp. 49–70). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • diSessa, A. A. (2008). A bird’s-eye view of the “pieces” vs. “coherence” controversy (from the “pieces” side of the fence). In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 35–60). New York, NY: Routledge.
  • diSessa, A. A., Gillespie, N. M., & Esterly, J. B. (2004). Coherence versus fragmentation in the development of the concept of force. Cognitive Science, 28, 843–900. doi:10.1016/j.cogsci.2004.05.003
  • Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of Cronbach’s alpha. Psychometrika, 74, 107–120. doi:10.1007/S11336-008-9101-0
  • Singer, S. R., Nielsen, N. R., & Schweingruber, H. A. (2012). Discipline-based education research: Understanding and improving learning in undergraduate science and engineering. Washington, DC: National Academies Press.
  • Solano-Flores, G., & Nelson-Barber, S. (2001). On the cultural validity of science assessments. Journal of Research in Science Teaching, 38, 553–573. doi:10.1002/tea.1018
  • Solomonidou, C., & Stavridou, H. (2000). From inert object to chemical substance: Students’ initial conceptions and conceptual development during an introductory experimental chemistry sequence. Science Education, 84, 382–400. doi:10.1002/(SICI)1098-237X(200005)84:3<382::AID-SCE4>3.0.CO;2-D
  • Stains, M., Escriu-Sune, M., De Santizo, Molina Alvarez de Santizo, M. L. & Sevian, H. (2011). Assessing secondary and college students’ implicit assumptions about the particulate nature of matter: Development and validation of the structure and motion of matter survey. Journal of Chemical Education, 88, 1359–1365. doi:10.1021/ed1002509
  • Taber, K. S. (2015). Exploring the language(s) of chemistry education. Chemistry Education Research and Practice, 16, 193–197. doi:10.1039/c5rp90003d
  • Talanquer, V. (2007). Explanations and teleology in chemistry education. International Journal of Science Education, 29, 853–870. doi:10.1080/09500690601087632
  • Talanquer, V. (2013). How do students reason about chemical substances and reactions?. In G. Tsaparlis, & H. Sevian (Eds.), Concepts of matter in science education (pp. 331–346). Dordrecht: Springer Science+Business Media.
  • Talanquer, V. (2016). Central ideas in chemistry: An alternative perspective. Journal of Chemical Education, 93, 3–8. doi:10.1021/acs.jchemed.5b00434
  • Tasker, R. (2014). Visualising the molecular world for a deep understanding of chemistry. Teaching Science, 60, 16–27.
  • Tasker, R., & Dalton, R. (2006). Research into practice: Visualisation of the molecular world using animations. Chemistry Education Research and Practice, 7, 141–159. doi:10.1039/B5RP90020D
  • Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach’s alpha. International Journal of Medical Education, 2, 53–55. doi:10.5116/ijme.4dfb.8dfd
  • Treagust, D. F. (1986). Evaluating students’ misconceptions by means of diagnostic multiple choice items. Research in Science Education, 16, 199–207. doi:10.1007/BF02356835
  • Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in science. International Journal of Science Education, 10, 159–169. doi:10.1080/0950069880100204
  • Treagust, D. F., Chandrasegaran, A. L., Crowley, J., Yung, B. H. W., Cheong, I. P.-A., & Othman, J. (2010). Evaluating students’ understanding of kinetic particle theory concepts relating to the states of matter, changes of state and diffision: A cross-national study. International Journal of Science and Mathematics Education, 8, 141–164. doi:10.1007/s10763-009-9166-y
  • Treagust, D. F., Chandrasegaran, A. L., Zain, A. N. M., Ong, E. T., Karpudewan, M., & Halim, L. (2011). Evaluation of an intervention instructional program to facilitate understanding of basic particle concepts among students enrolled in several levels of study. Chemistry Education Research and Practice, 12, 251–261. doi:10.1039/C1RP90030G
  • Tyson, L., Treagust, D. F., & Bucat, R. B. (1999). The complexity of teaching and learning chemical equilibrium. Journal of Chemical Education, 76, 554–558. doi:10.1021/ed076p554
  • Tytler, R. (2000). A comparison of year 1 and year 6 students’ conceptions of evaporation and condensation: Dimensions of conceptual progression. International Journal of Science Education, 22, 447–467. doi:10.1080/095006900289723
  • Vosniadou, S. (2012). Reframing the classical approach to conceptual change: Preconceptions, misconceptions and synthetic models. In B. J. Fraser, K. G. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 119–130). Dordrecht: Springer Science+Business Media.
  • Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008). The framework theory approach to the problem of conceptual change. In S. Vosniadou, (Ed.), International handbook of research on conceptual change (pp. 3–34). New York, NY: Routledge.
  • Wren, D., & Barbera, J. (2013). Gathering evidence for validity during the design, development, and qualitative evaluation of thermochemistry concept inventory items. Journal of Chemical Education, 90, 1590–1601. doi:10.1021/ed400384g
  • Wren, D., & Barbera, J. (2014). Psychometric analysis of the thermochemistry concept inventory. Chemistry Education Research and Practice, 15, 380–390. doi:10.1039/c3rp00170a
  • Yezierski, E. J., & Birk, J. P. (2006). Misconceptions about the particulate nature of matter: Using animations to close the gender gap. Journal of Chemical Education, 83, 954–960. doi:10.1021/ed083p954
  • Yorke, M. (2001). Formative assessment and its relevance to retention. Higher Education Research & Development, 20, 115–126. doi:10.1080/758483462

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.