1,054
Views
8
CrossRef citations to date
0
Altmetric
Articles

The effects of explicit visual cues in reading biological diagrams

, &
Pages 605-626 | Received 01 Sep 2016, Accepted 16 Feb 2017, Published online: 24 Mar 2017

References

  • Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33, 131–152. doi: 10.1016/S0360-1315(99)00029-9
  • Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183–198. doi: 10.1016/j.learninstruc.2006.03.001
  • Andreassen, R., & Braten, I. (2010). Examining the prediction of reading comprehension on different multiple-choice tests. Journal of Research in Reading, 33(3), 263–283. doi: 10.1111/j.1467-9817.2009.01413.x
  • Beck, C. R. (1984). Visual cueing strategies: Pictorial, textual, and combinational effects. Educational Communication and Technology Journal, 32, 207–216.
  • Blystone, R. V., & Dettling, B. C. (1990). Visual literacy in science textbooks. In M. B. Rowe (Ed.), What research says to the science teacher–the process of knowing (pp. 19–40). Washington, DC: Notional Science Teachers Association.
  • Canham, M., & Hegarty, M. (2010). Effects of knowledge and display design on comprehension of complex graphics. Learning and Instruction, 20, 155–166. doi: 10.1016/j.learninstruc.2009.02.014
  • Catley, K. M., Novick, L. R., & Shade, C. K. (2010). Interpreting evolutionary diagrams: When topology and process conflict. Journal of Reseach in Science Teaching, 47, 861–882. doi: 10.1002/tea.20384
  • Catley, K. M., Phillips, B. C., & Novick, L. R. (2013). Snakes and eels and dogs! Oh, my! Evaluating high school students’ tree-thinking skills: An entry point to understanding evolution. Research in Science Education, 43, 2327–2348. doi: 10.1007/s11165-013-9359-9
  • Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8, 293–332. doi: 10.1207/s1532690xci0804_2
  • Chen, S.-H., Fang, C.-H., Yao, H., Hsu, K.-C., & Lee, T.-Y. (2010). Science and technology 2. Tainan: Han-Lin.
  • Chen, S.-H., Fang, C.-H., Yao, H., Hsu, K.-C., & Lee, T.-Y. (2013). Science and technology 2. Tainan: Han-Lin.
  • Cook, M. P. (2006). Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 90(6), 1073–1091. doi: 10.1002/sce.20164
  • Cook, M. P., Wiebe, E. N., & Carter, G. (2008). The influence of prior knowledge on viewing and interpreting graphics with macroscopic and molecular representations. Science Education, 92, 848–867. doi: 10.1002/sce.20262
  • de Koning, B. B., Tabbers, H. K., Rikers, R. M. J. P., & Paas, F. (2009). Towards a framework for attention cueing in instructional animations: Guidelines for research and design. Educational Psychology Review, 21(2), 113–140. doi: 10.1007/s10648-009-9098-7
  • Deneault, J., & Ricard, M. (2005). The effect of hierarchical levels of categories on children's deductive inferences about inclusion. International Journal of Psychology, 40(2), 65–79. doi:10.1080/00207590444000032
  • diSessa, A. A. (2004). Metarepresentations: Native competence and targets for instruction. Cognition and Instruction, 22(3), 293–331. doi: 10.1207/s1532690xci2203_2
  • Eilam, B. (2013). Possible constraints of visualization in biology: Challenges in learning with multiple representations. In D. F. Treagust& C.-Y. Tsui (Eds.), Multiple representations in biological education (pp. 55–74). London: Springer.
  • Enns, J. T., Austen, E. L., Di Lollo, V., Rauschenberger, R., & Yantis, S. (2001). New objects dominate luminance transients in attentional capture. Journal of Experimental Psychology: Human Perception & Performance, 27, 1287–1302.
  • Fabrikant, S. I., Rebich-Hespanha, S., & Hegarty, M. (2010). Cognitively inspired and perceptually salient graphic displays for efficient inference making. Annals of the Association of American Geographers, 100, 13–29. doi: 10.1080/00045600903362378
  • Fleming, M. L. (1987). Designing pictorial/verbal instruction: Some speculative extensions from research to practice. In D. A. Houghton& E. M. Willows (Eds.), The psychology of illustration volume 2 – instructional issues (Vol. 2, pp. 136–157). New York, NY: Springer-Verlag.
  • Gentner, D., & Markmann, A. B. (1997). Structure mapping in analogy and similarity. American Psychologist, 25, 45–56. doi: 10.1037/0003-066X.52.1.45
  • Ge, Y.-P., Unsworth, L., Wang, K.-H., & Chang, H.-P. (in press-a). Image design for enhancing science learning: Helping students build taxonomic meanings with salient tree structure images. In K.-S. T. A. K. Danielsson (Ed.), Global developments in literacy research for science education. Springer.
  • Ge, Y.-P., Unsworth, L., Wang, K.-H., & Chang, H.-P. (in press-b). What images reveal: A cross-national comparison of Australian and Taiwanese junior high school science textbooks. Research in Science Education. doi:10.1007/s11165–016–9608–9
  • Hegarty, M. (2011). The cognitive science of visual-spatial displays: Implications for design. Topics in Cognitive Science, 3, 446–474. doi: 10.1111/j.1756-8765.2011.01150.x
  • Hegarty, M., & Just, M. A. (1993). Constructing mental models of machines from texts and diagrams. Journal of Memory and Language, 32, 717–742. doi: 10.1006/jmla.1993.1036
  • Heiser, J., & Tversky, B. (2006). Arrows in comprehending and producing mechanical diagrams. Cognitive Science, 30, 581–592. doi: 10.1207/s15516709cog0000_70
  • He, Q., & Tymms, P. (2005). A computer-assisted test design and diagnosis system for use by classroom teachers. Journal of Computer Assisted Learning, 21, 419–429. doi: 10.1111/j.1365-2729.2005.00148.x
  • Hmelo-Silver, C. E., & Azevedo, R. (2006). Understanding complex systems: Some core challenges. The Journal of the Learning Sciences, 15(1), 53–61. doi: 10.1207/s15327809jls1501_7
  • Ifenthaler, D. (2010). Relational, structural, and semantic analysis of graphical representations and concept maps. Educational Technology Research and Development, 58, 81–97. doi: 10.1007/s11423-008-9087-4
  • Jennings, T., & Dwyer, F. (1985). The instructional effect of differential cueing strategies in facilitating student achievement of different educational objectives. International Journal of Instructional Media, 12, 8–20.
  • Korner, C. (2005). Concepts and misconceptions in comprehension of hierarchical graphs. Learning and Instruction, 15, 281–296. doi: 10.1016/j.learninstruc.2005.07.003
  • Kosslyn, S. M. (2006). Graph design for the eye and mind. New York, NY: Oxford University Press.
  • Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2), 205–226. doi: 10.1016/S0959-4752(02)00021-X
  • Krathwohl, D. R. (2002). A revision of bloom’s taxonomy: An overview. Theory into Practice, 41(4), 212–218. doi: 10.1207/s15430421tip4104_2
  • Kress, G., & van Leeuwen, T. (2006). Reading images : The grammar of visual design (2nd ed.). New York, NY: Routledge.
  • Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65–99. doi: 10.1111/j.1551-6708.1987.tb00863.x
  • Lee, V. R. (2010a). Adaptations and continuities in the use and design of visual representations in US middle school science textbooks. International Jounal of Science Education, 32(8), 1099–1126. doi: 10.1080/09500690903253916
  • Lee, V. R. (2010b). How different variants of orbit diagrams influence student explanations of the seasons. Science Education, 94, 985–1007. doi: 10.1002/sce.20403
  • Lin, Y.-Ch., Lee, Ch.-Sh., Huang, N.-T., Chang, Y.-T., & Tsai, Sh.-F. (2010). Science and technology 2. Taipei: Kan-Shen.
  • Mayer, R. E. (1992). Thinking, problem solving, cognition (2nd ed.). New York, NY: W. H. Freeman.
  • Mayer, R. E. (2001). Multimedia learning.Cambridge: Cambridge University Press.
  • Novick, L. R. (2001). Spatial diagrams: Key instruments in the toolbox for thought. In D. L. Medin (Ed.), The psychology of learning and motivation (Vol. 40, pp. 279–325). San Diego, CA: Academic Press.
  • Novick, L. R., & Catley, K. M. (2007). Understanding phylogenies in biology: The influence of a gestalt perceptual principle. Journal of Experimental Psychology: Applied, 13(4), 197–223.
  • Patrick, M. D., Carter, G., & Wiebe, E. N. (2005). Visual representations of DNA replication: Middle grades students’ perceptions and interpretations. Journal of Science Education and Technology, 14(3), 353–365. doi: 10.1007/s10956-005-7200-6
  • Peeck, J. (1993). Increasing picture effects in learning from illustrated text. Learning and Instruction, 3, 227–238. doi: 10.1016/0959-4752(93)90006-L
  • Pinto, R., & Ametller, J. (2002). Students’ difficulties in reading images. Comparing results from four national research groups. International Jounal of Science Education, 24(3), 333–341. doi: 10.1080/09500690110078932
  • Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning and Instruction, 13, 141–156. doi: 10.1016/S0959-4752(02)00017-8
  • Schnotz, W., & Lowe, R. (2003). External and internal representations in multimedia learning. Learning and Instruction, 13, 117–123. doi: 10.1016/S0959-4752(02)00015-4
  • Seufert, T. (2003). Supporting coherence formation in learning from multiple representations. Learning and Instruction, 13, 227–237. doi: 10.1016/S0959-4752(02)00022-1
  • Shah, P., Hegarty, M., & Mayer, R. E. (1999). Graphs as aids to knowledge construction: Signaling techniques for guiding the process of graph comprehension. Journal of Educational Psychology, 91, 690–702. doi: 10.1037/0022-0663.91.4.690
  • Stern, L., & Roseman, J. E. (2004). Can middle-school science textbooks help students learn important ideas? Findings from project 2061’s curriculum evaluation study: Life science. Journal of Research in Science Teaching, 41(6), 538–568. doi: 10.1002/tea.20019
  • Stylianidou, F., & Ogborn, F. (2002). Analysis of science textbook pictures about energy and pupils’ readings of them. International Journal of Science Education, 24(3), 257–283. doi: 10.1080/09500690110078905
  • Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296. doi: 10.1023/A:1022193728205
  • Tversky, B. (2011). Visualizing thought. Topics in Cognitive Science, 3, 499–535. doi: 10.1111/j.1756-8765.2010.01113.x
  • Tversky, B., Heiser, J., Lozano, S., MacKenzie, R., & Morrison, J. (2007). Enriching animations. In R. Lowe & W. Schnotz (Eds.), Learning with animation (pp. 263–285). Cambridge: Cambridge University Press.
  • Unsworth, L. (2001). Teaching multiliteracies across the curriculum-changing contexts of text and image in classroom practice. Philadelphia, PA: Open University Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.