658
Views
19
CrossRef citations to date
0
Altmetric
Articles

Generative mechanistic explanation building in undergraduate molecular and cellular biologyFootnote*

, , &
Pages 1795-1829 | Received 08 Jul 2016, Accepted 06 Jul 2017, Published online: 27 Jul 2017

References

  • Abrams, E., & Southerland, S. (2001). The how’s and why’s of biological change: How learners neglect physical mechanisms in their search for meaning. International Journal of Science Education, 23(12), 1271–1281. doi: 10.1080/09500690110038558
  • Adler, J. (1966). Chemotaxis in bacteria. Science, 153(3737), 708–716. doi: 10.1126/science.153.3737.708
  • Adler, J. (1975). Chemotaxis in bacteria. Annual Review of Biochemistry, 44(1), 341–356. doi: 10.1146/annurev.bi.44.070175.002013
  • American Association for the Advancement of Science (AAAS). (2011). Vision and change in undergraduate biology education: A call to action. Washington, DC: Author.
  • Auchincloss, L. C., Laursen, S. L., Branchaw, J. L., Eagan, K., Graham, M., Hanauer, D. I., & Dolan, E. L. (2014). Assessment of course-based undergraduate research experiences: A meeting report. CBE Life Sciences Education, 13(1), 29–40. doi: 10.1187/cbe.14-01-0004
  • Bock, W. (2017). Dual causality and the autonomy of biology. Acta Biotheoretica. doi: 10.1007/s10441-016-9303-2
  • Bolger, M. S., Kobiela, M., Weinberg, P., & Lehrer, R. (2012). Children’s mechanistic reasoning. Cognition and Instruction, 30(2), 170–206. doi: 10.1080/07370008.2012.661815
  • Brownell, S. E., Hekmat-Scafe, D. S., Singla, V., Seawell, P. C., Imam, J. F. C., Eddy, S. L., & Cyert, M. S. (2015). A high-enrollment course-based undergraduate research experience improves student conceptions of scientific thinking and ability to interpret data. CBE-Life Sciences Education, 14(2), 1–14. doi: 10.1187/cbe.15-01-0007
  • Clement, J. (2006). Thought experiments and imagery in expert protocols. In L. Magnani (Ed.), Model-based reasoning in science and engineering (pp. 1–16). London: College Publications.
  • Clement, J. J. (2013). Roles for explanatory models and analogies in conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 412–446). New York: Routledge.
  • Craver, C. F. (2001). Role functions, mechanisms, and hierarchy. Philosophy of Science, 68(1), 53–74. doi: 10.1086/392866
  • Craver, C. F. (2002a). Interlevel experiments and multilevel mechanisms in the neuroscience of memory. Philosophy of Science, 69(S3), S83–S97. doi: 10.1086/341836
  • Craver, C. F. (2002b). Structures of scientific theories. In P. K. Machamer & M. Siberstein (Eds.), The Blackwell guide to the philosophy of science (pp. 55–79). Oxford: Blackwell.
  • Darden, L. (2002). Strategies for discovering mechanisms: Schema instantiation, modular subassembly, forward/backward chaining. Philosophy of Science, 69(S3), S354–S365. doi: 10.1086/341858
  • diSessa, A. A. (1988). Knowledge in pieces. In G. Forman & P. B. Pufall (Eds.), Constructivism in the computer age (pp. 49–70). Hillsdale: Lawrence.
  • Duncan, R. G. (2007). The role of domain-specific knowledge in generative reasoning about complicated multileveled phenomena. Cognition and Instruction, 25(4), 271–336. doi: 10.1080/07370000701632355
  • Duncan, R. G., & Reiser, B. J. (2007). Reasoning across ontologically distinct levels: Students’ understandings of molecular genetics. Journal of Research in Science Teaching, 44(7), 938–959. doi: 10.1002/tea.20186
  • Duncan, R. G., & Tseng, K. A. (2011). Designing project-based instruction to foster generative and mechanistic understandings in genetics. Science Education, 95(1), 21–56. doi: 10.1002/sce.20407
  • Dupre, J. (2009). It is not possible to reduce biological explanations to explanations in chemistry and/or physics. In F. J. Ayala & R. Arp (Eds.), Contemporary debates in philosophy of biology (pp. 32–47). Oxford: Wiley-Blackwell.
  • Ferrari and Chi. (1998). The nature of explanations of natural selection. International Journal of Science Education, 20(10), 1231–1256. doi: 10.1080/0950069980201005
  • Greeno, J. G. (1983). Conceptual entities. In D. Gentner & A. Stevens (Eds.), Mental models (pp. 227–252). Mahwah, NJ: Lawrence Erlbaum Press.
  • Hartwell, L. H., Hopfield, J. J., Leibler, S., & Murray, A. W. (1999). From molecular to modular cell biology. Nature, 402, C47–C52. doi: 10.1038/35011540
  • Kaiser, M. I. (2015). A closer look at biological explanations. In C. T. Wolfe, P. Huneman, & T. A. C. Reydon (Eds.), Reductive explanation in the biological sciences, history, philosophy and theory of the life sciences (pp. 135–171). Switzerland: Springer International.
  • Kitcher, P. (1989). Explanatory unification and the causal structure of the world. In Philip Kitcher & Wesley Salmon (Eds.), Scientific explanation. Minnesota studies in the philosophy of Science (Vol. 13, pp. 410–505). Minneapolis: University of Minnesota Press.
  • Lehrer, R., & Schauble, L. (1998). Reasoning about structure and function: Children’s conceptions of gears. Journal of Research in Science Teaching, 35(1), 3–25. doi: 10.1002/(SICI)1098-2736(199801)35:1<3::AID-TEA2>3.0.CO;2-X
  • Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 1–25. doi: 10.1086/392759
  • Marbach-Ad, G., & Stavy, R. (2000). Students’ cellular and molecular explanations of genetic phenomena. Journal of Biological Education, 34(4), 200–205. doi: 10.1080/00219266.2000.9655718
  • Matthews, M. R. (2014). International handbook of research in history, philosophy and science teaching. Dordrecht: Springer.
  • Mayr, E. (1961). Cause and effect in biology: Kinds of causes, predictability, and teleology as viewed by a practicing biologist. Science, 134, 1501–1506. doi: 10.1126/science.134.3489.1501
  • Metz, K. E. (1985). The development of children’s problem solving in a gears task: A problem space perspective. Cognitive Science, 9(4), 431–471. doi: 10.1207/s15516709cog0904_4
  • Morange, M. (2008). The death of molecular biology (M. Cobb, Trans.). Cambridge, MA: Harvard University Press.
  • National Research Council. (2011). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
  • Nersessian, N. J. (2008). Creating scientific concepts. Cambridge, MA: MIT Press.
  • Next Generation Science Standards (NGSS) Lead States. (2013). Next generation science standards: For states, By states. Washington, DC: National Academies Press.
  • Passmore, C., Stewart, J., & Cartier, J. (2009). Model-based inquiry and school science: Creating connections. School Science and Mathematics, 109(7), 394–402. doi: 10.1111/j.1949-8594.2009.tb17870.x
  • Penner, D., & Klahr, D. (1996). The interaction of domain-specific knowledge and domain general discovery strategies: A study with sinking objects. Child Development, 67, 2709–2727. doi: 10.2307/1131748
  • Perkins, D. (1993). Teaching for understanding. The Professional Journal of the American Federation of Teachers, 17(3), 28–35.
  • Rumelhart, D. E. (1980). Schemata: The building blocks of cognition. In R. J. Spiro, B. C. Bruce, & W. F. Berwer (Eds.), Theoretical issues in reading comprehension (pp. 33–58). Hillsdale, NJ: Lawrence Erlbaum.
  • Russ, R. S., Scherr, R. E., Hammer, D., & Mikeska, J. (2008). Recognizing mechanistic reasoning in student scientific inquiry: A framework for discourse analysis developed from philosophy of science. Science Education, 92(3), 499–525. doi: 10.1002/sce.20264
  • Southard, K., Wince, T., Meddleton, S., & Bolger, M. S. (2016). Features of knowledge building in biology: Understanding undergraduate students’ ideas about molecular mechanisms. CBE-Life Sciences Education, 15(1), 1–16.
  • Southerland, S. A., Abrams, E., Cummins, C. L., & Anzelmo, J. (2001). Understanding students’ explanations of biological phenomena: Conceptual frameworks or p-prims? Science Education, 85(4), 328–348. doi: 10.1002/sce.1013
  • Spiro, R. J., Feltovich, P. J., Jacobson, M. J., & Coulson, R. L. (1992). Cognitive flexibility, constructivism, and hypertext: Random access instruction for advanced knowledge acquisition in Ill-structured domains. In T. M. Duffy & D. H. Jonassen (Eds.), Constructivism and the technology of instruction: A conversation (pp. 57–76). Hillsdale, NJ: Routledge.
  • Stewart, J., Hafner, B., & Dale, M. (1990). Students’ alternative view of meiosis. The American Biology Teacher, 52(4), 228–232. doi: 10.2307/4449090
  • Van Mil, M. H., Boerwinkel, D. J., & Waarlo, A. J. (2013). Modelling molecular mechanisms: A framework of scientific reasoning to construct molecular-level explanations for cellular behaviour. Science & Education, 22(1), 93–118. doi: 10.1007/s11191-011-9379-7
  • Van Mil, M. H., Postma, P. A., Boerwinkel, D. J., Klaassen, K., & Waarlo, A. J. (2016). Molecular mechanistic reasoning: Toward bridging the gap between the molecular and cellular levels in life science education. Science Education, 100, 517–585. doi: 10.1002/sce.21215
  • Venville, G. J., & Treagust, D. F. (1998). Exploring conceptual change in genetics using a multidimensional interpretive framework. Journal of Research in Science Teaching, 35(9), 1031–1055. doi: 10.1002/(SICI)1098-2736(199811)35:9<1031::AID-TEA5>3.0.CO;2-E
  • Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems approach to making sense of the world. Journal of Science Education and Technology, 8(1), 3–19. doi: 10.1023/A:1009421303064

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.