6,011
Views
24
CrossRef citations to date
0
Altmetric
Articles

Using model-based scaffolds to support students solving context-based chemistry problems

, &
Pages 1176-1197 | Received 18 Apr 2018, Accepted 24 Apr 2018, Published online: 09 May 2018

References

  • Bellocchi, A., King, D. T., & Ritchie, S. M. (2016). Context-based assessment: Creating opportunities for resonance between classroom fields and societal fields. International Journal of Science Education, 38(8), 1304–1342. doi: 10.1080/09500693.2016.1189107
  • Bennett, S. W. (2008). Problem solving: Can anybody do it? Chemistry Education Research and Practice, 9(1), 60–64. doi: 10.1039/B801298A
  • Bennett, J., Lubben, F., & Hogarth, S. (2007). Bringing science to life: A synthesis of the research evidence on the effects of context-based and STS approaches to science teaching. Science Education, 91(3), 347–370. doi: 10.1002/sce.20186
  • Bernholt, S., & Parchmann, I. (2011). Assessing the complexity of students’ knowledge in chemistry. Chemistry Education Research and Practice, 12(2), 167–173. doi: 10.1039/C1RP90021H
  • Biggs, J. B., & Collis, K. F. (1982). Evaluating the quality of learning: The SOLO taxonomy. New York, NY: Academic Press.
  • Biggs, J. B., & Tang, C. (2007. Teaching for quality learning at university (3rd ed.). Maidenhead: Open University Press, McGraw Hill.
  • Bodner, G. M., & McMillen, T. L. B. (1986). Cognitive restructuring as an early stage in problem solving. Journal of Research in Science Teaching, 23(8), 727–737. doi: 10.1002/tea.3660230807
  • Broman, K., Bernholt, S., & Parchmann, I. (2015). Analysing task design and students’ responses to context-based problems through different analytical frameworks. Research in Science & Technological Education, 33(2), 143–161. doi: 10.1080/02635143.2014.989495
  • Broman, K., & Parchmann, I. (2014). Students’ application of chemical concepts when solving chemistry problems in different contexts. Chemistry Education Research and Practice, 15(4), 516–529. doi: 10.1039/C4RP00051J
  • Brown, D. E. (2014). Students’ conceptions as dynamically emergent structures. Science & Education, 23(7), 1463–1483. doi: 10.1007/s11191-013-9655-9
  • Bulte, A. M. W., Westbroek, H. B., de Jong, O., & Pilot, A. (2006). A research approach to designing chemistry education using authentic practices as contexts. International Journal of Science Education, 28(9), 1063–1086. doi: 10.1080/09500690600702520
  • Byun, H., Lee, J., & Cerreto, F. A. (2014). Relative effects of three questioning strategies in ill-structured, small group problem solving. Instructional Science, 42(2), 229–250. doi: 10.1007/s11251-013-9278-1
  • Chi, M. T. H., Slotta, J. D., & de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27–43. doi: 10.1016/0959-4752(94)90017-5
  • Clark, D. (2006). Longitudinal conceptual change in students’ understanding of thermal equilibrium: An examination of the process of conceptual restructuring. Cognition and Instruction, 24(4), 467–563. doi: 10.1207/s1532690xci2404_3
  • Dawson, C. (2014). Towards a conceptual profile: Rethinking conceptual mediation in the light of recent cognitive and neuroscientific findings. Research in Science Education, 44(3), 389–414. doi: 10.1007/s11165-013-9388-4
  • de Jong, O., & Taber, K. S. (2014). The many faces of high school chemistry. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (Vol. 2, pp. 457–480). New York, NY: Routledge.
  • Demetriadis, S. N., Papadopoulos, P. M., Stamelos, I. G., & Fischer, F. (2008). The effect of scaffolding students’ context-generating cognitive activity in technology-enhanced case-based learning. Computers & Education, 51(2), 939–954. doi: 10.1016/j.compedu.2007.09.012
  • diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2 & 3), 105–225. doi: 10.1080/07370008.1985.9649008
  • diSessa, A. A., Sherin, B., & Levin, M. (2016). Knowledge analysis: An introduction. In A. diSessa, M. Levin, & N. J. S. Brown (Eds.), Knowledge and interaction: A synthetic agenda for the learning sciences (pp. 30–71). New York, NY: Routledge.
  • diSessa, A. A., & Wagner, J. F. (2005). What coordination has to say about transfer. In J. P. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 121–154). Greenwich, CT: Information Age Publishing.
  • Fach, M., de Boer, T., & Parchmann, I. (2007). Results of an interview study as basis for the development of stepped supporting tools for stoichiometric problems. Chemistry Education Research and Practice, 8(1), 13–31. doi: 10.1039/B6RP90017H
  • Gilbert, J. K., Bulte, A. M. W., & Pilot, A. (2011). Concept development and transfer in context-based science education. International Journal of Science Education, 33(6), 817–837. doi: 10.1080/09500693.2010.493185
  • Hayes, J. R. (1989). The complete problem solver (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 99–107. doi: 10.1080/00461520701263368
  • Jonassen, D. H., & Ionas, I. G. (2008). Designing effective supports for causal reasoning. Educational Technology Research and Development, 56(3), 287–308. doi: 10.1007/s11423-006-9021-6
  • Kapon, S., & diSessa, A. A. (2012). Reasoning through instructional analogies. Cognition and Instruction, 30(3), 261–310. doi: 10.1080/07370008.2012.689385
  • Kelly, R., McLoughlin, E., & Finlayson, O. E. (2016). Analysing student written solutions to investigate if problem-solving processes are evident throughout. International Journal of Science Education, 38(11), 1766–1784. doi: 10.1080/09500693.2016.1214766
  • King, D. (2012). New perspectives on context-based chemistry education: Using a dialectical sociocultural approach to view teaching and learning. Studies in Science Education, 48(1), 51–87. doi: 10.1080/03057267.2012.655037
  • King, D., & Ritchie, S. M. (2012). Learning science through real-world contexts. In B. J. Fraser, K. G. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 69–79). Berlin: Springer.
  • King, D., & Ritchie, S. M. (2013). Academic success in context-based chemistry: Demonstrating fluid transitions between concepts and context. International Journal of Science Education, 35(7), 1159–1182. doi: 10.1080/09500693.2013.774508
  • Knobloch, R., Sumfleth, E., & Walpuski, M. (2012). How does the quality of content-related communication influence the learning outcome in small-groups? Paper presented at the ICCE/ECRICE, Rome.
  • Leou, M., Abder, P., Riordan, M., & Zoller, U. (2006). Using ‘HOCS-centered learning’ as a pathway to promote science teachers’ metacognitive development. Research in Science Education, 36(1-2), 69–84. doi: 10.1007/s11165-005-3916-9
  • Nakhleh, M. B., & Mitchell, R. C. (1993). Concept learning versus problem solving: There is a difference. Journal of Chemical Education, 70(3), 190–192. doi: 10.1021/ed070p190
  • Nentwig, P., Demuth, R., Parchmann, I., Gräsel, C., & Ralle, B. (2007). Chemie im Kontext: Situated learning in relevant contexts while systematically developing basic chemical concepts. Journal of Chemical Education, 84(9), 1439–1444. doi: 10.1021/ed084p1439
  • Nentwig, P., & Waddington, D. (Eds.). (2005). Making it relevant: Context based learning of science. Münster: Waxmann.
  • OECD. (2003). The PISA 2003 assessment framework - mathematics, reading, science and problem solving knowledge and skills. Paris: OECD Publishing.
  • Overton, T. L., Potter, N. M., & Leng, C. (2013). A study of approaches to solving open-ended problems in chemistry. Chemistry Education Research and Practice, 14(4), 468–475. doi: 10.1039/C3RP00028A
  • Ozdemir, G., & Clark, D. (2009). Knowledge structure coherence in Turkish students’ understanding of force. Journal of Research in Science Teaching, 46(5), 570–596. doi: 10.1002/tea.20290
  • Parchmann, I., Gräsel, C., Baer, A., Nentwig, P., Demuth, R., & Ralle, B. (2006). “Chemie im kontext”: A symbiotic implementation of a context-based teaching and learning approach. International Journal of Science Education, 28(9), 1041–1062. doi: 10.1080/09500690600702512
  • Podschuweit, S., Bernholt, S., & Brückmann, M. (2016). Classroom learning and achievement: How the complexity of classroom interaction impacts students’ learning. Research in Science & Technological Education, 34(2), 142–163. doi: 10.1080/02635143.2015.1092955
  • Prins, G. T., Bulte, A. M. W., & Pilot, A. (2016). An activity-based instructional framework for transforming authentic modeling practices into meaningful contexts for learning in science education. Science Education, 100(6), 1092–1123. doi: 10.1002/sce.21247
  • Sadler, T. D. (2009). Situated learning in science education: Socio-scientific issues as contexts for practice. Studies in Science Education, 45(1), 1–42. doi: 10.1080/03057260802681839
  • Salta, K., & Tzougraki, C. (2011). Conceptual versus algorithmic problem-solving: Focusing on problems dealing with conservation of matter in chemistry. Research in Science Education, 41(4), 587–609. doi: 10.1007/s11165-010-9181-6
  • Schwartz, A. T. (2006). Contextualized chemistry education: The American experience. International Journal of Science Education, 28(9), 977–998. doi: 10.1080/09500690600702488
  • Sevian, H., & Talanquer, V. (2014). Rethinking chemistry: A learning progression on chemical thinking. Chemistry Education Research and Practice, 15(1), 10–23. doi: 10.1039/C3RP00111C
  • Shavelson, R. J., Ruiz-Primo, M. A., & Wiley, E. W. (2005). Windows into the mind. Higher Education, 49(4), 413–430. doi: 10.1007/s10734-004-9448-9
  • Smith, D. K. (2011). From crazy chemists to engaged learners through education. Nature Chemistry, 3(9), 681–684. doi: 10.1038/nchem.1091
  • Stuckey, M., Hofstein, A., Mamlok-Naaman, R., & Eilks, I. (2013). The meaning of ‘relevance’ in science education and its implications for the science curriculum. Studies in Science Education, 49(1), 1–34. doi: 10.1080/03057267.2013.802463
  • Taasoobshirazi, G., & Carr, M. (2008). A review and critique of context-based physics instruction and assessment. Educational Research Review, 3(2), 155–167. doi: 10.1016/j.edurev.2008.01.002
  • Taber, K. S., & Watts, M. (2000). Learners’ explanations for chemical phenomena. Chemistry Education Research and Practice, 1(3), 329–353. doi: 10.1039/B0RP90015J
  • Toledo, S., & Dubas, J. M. (2016). Encouraging higher-order thinking in general chemistry by scaffolding student learning using marzano’s taxonomy. Journal of Chemical Education, 93(1), 64–69. doi: 10.1021/acs.jchemed.5b00184
  • Ültay, N., & Calik, M. (2012). A thematic review of studies into the effectiveness of context-based chemistry curricula. Journal of Science Education and Technology, 21(6), 686–701. doi: 10.1007/s10956-011-9357-5
  • Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24, 535–585. doi: 10.1016/0010-0285(92)90018-W
  • Wagner, J. F. (2010). A transfer-in-pieces consideration of the perception of structure in the transfer of learning. Journal of the Learning Sciences, 19(4), 443–479. doi: 10.1080/10508406.2010.505138
  • Whitelegg, E., & Parry, M. (1999). Real-life contexts for learning physics: Meanings, issues and practice. Physics Education, 34(2), 68–72. doi: 10.1088/0031-9120/34/2/014
  • Wickman, P.-O. (2014). Teaching learning progressions. An international perspective. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (Vol. 2, pp. 145–163). New York, NY: Routledge.
  • Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89–100. doi: 10.1111/j.1469-7610.1976.tb00381.x
  • Zoller, U., & Dori, Y. J. (2002). Algorithmic, LOCS and HOCS (chemistry) exam questions: Performance and attitudes of college students. International Journal of Science Education, 24(2), 185–203. doi: 10.1080/09500690110049060