901
Views
11
CrossRef citations to date
0
Altmetric
Articles

Comparison of learning in two context-based university chemistry classes

ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 1239-1262 | Received 18 Apr 2018, Accepted 24 Apr 2018, Published online: 11 May 2018

References

  • Bakhtin, M. M. (1986). Speech genres & other late essays. Austin: University of Texas Press.
  • Banerjee, M., Capozzoli, M., McSweeney, L., & Sinha, D. (1999). Beyond kappa: A review of interrater agreement measures. Canadian Journal of Statistics, 27(1), 3–23. doi: 10.2307/3315487
  • Banks, G., Clinchot, M., Cullipher, S., Huie, R., Lambertz, J., Lewis, R., … Weinrich, M. (2015). Uncovering chemical thinking in students’ decision making: A fuel-choice scenario. Journal of Chemical Education, 92(10), 1610–1618. doi: 10.1021/acs.jchemed.5b00119
  • Baran, M., & Sozbilir, M. (2017). An application of context- and problem-based learning (C-PBL) into teaching thermodynamics. Research in Science Education. doi: 10.1007/s11165-016-9583-1
  • Becu, N., Neef, A., Schreinemachers, P., & Sangkapitux, C. (2008). Participatory computer simulation to support collective decision-making: Potential and limits of stakeholder involvement. Land Use Policy, 25(4), 498–509. doi: 10.1016/j.landusepol.2007.11.002
  • Bennett, J., Lubben, F., & Hogarth, S. (2007). Bringing science to life: A synthesis of the research evidence on the effects of context-based and STS approaches to science teaching. Science Education, 91(3), 347–370. doi: 10.1002/sce.20186
  • Bernholt, S., & Parchmann, I. (2011). Assessing the complexity of students’ knowledge in chemistry. Chemistry Education Research and Practice, 12(2), 167–173. doi: 10.1039/C1RP90021H
  • Biggs, J. B., & Collis, K. F. (1982). Evaluating the quality of learning: The SOLO taxonomy (Structure of the Observed Learning Outcome). New York: Academic Press.
  • Broman, K., & Parchmann, I. (2014). Students’ application of chemical concepts when solving chemistry problems in different contexts. Chemistry Education Research and Practice, 15(4), 516–529. doi: 10.1039/C4RP00051J
  • Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32–42. doi: 10.3102/0013189X018001032
  • Brown, N. J. S., Nagashima, S. O., Fu, A., Timms, M., & Wilson, M. (2010). A framework for analyzing scientific reasoning in assessments. Educational Assessment, 15(3), 142–174. doi: 10.1080/10627197.2010.530562
  • Bulte, A. M., Westbroek, H. B., de Jong, O., & Pilot, A. (2006). A research approach to designing chemistry education using authentic practices as contexts. International Journal of Science Education, 28(9), 1063–1086. doi: 10.1080/09500690600702520
  • Claesgens, J., Scalise, K., Wilson, M., & Stacy, A. (2009). Mapping student understanding in chemistry: The perspectives of chemists. Science Education, 93(1), 56–85. doi: 10.1002/sce.20292
  • Cullipher, S., & Sevian, H. (2015). Atoms versus bonds: How students look at spectra. Journal of Chemical Education, 92(12), 1996–2005. doi: 10.1021/acs.jchemed.5b00529
  • diSessa, A. A., Sherin, B. L., & Levin, M. (2015). Knowledge analysis: An introduction. In A. A. diSessa, M. Levin, & N. J. S. Brown (Eds.), Knowledge and interaction: A synthetic agenda for the learning sciences (pp. 30–71). New York: Routledge.
  • Dori, Y. J., & Sasson, I. (2013). A three-attribute transfer skills framework–part I: Establishing the model and its relation to chemical education. Chemistry Education Research and Practice, 14(4), 363–375. doi: 10.1039/C3RP20093K
  • Eubanks, L. T., & Eubanks, I. D. (1998). Preparing for your ACS examination in general chemistry: The official guide. Washington, DC: American Chemical Society.
  • Fechner, S. (2009). Effects of context-oriented learning on student achievement in chemistry education. Studien zum Physik- und Chemielernen: 95. Berlin: Logos.
  • Gilbert, J. K. (2006). On the nature of “context” in chemical education. International Journal of Science Education, 28(9), 957–976. doi: 10.1080/09500690600702470
  • Gilbert, J. K., & Treagust, D. (Eds.). (2009). Multiple representations in chemical education. Dordrecht: Springer.
  • Grotzer, T. A. (2003). Learning to understand the forms of causality implicit in scientifically accepted explanations. Studies in Science Education, 39(1), 1–74. doi: 10.1080/03057260308560195
  • Hall, R., & Stevens, R. (2015). Interaction analysis approaches to knowledge in use. In A. A. diSessa, M. Levin, & N. J. S. Brown (Eds.), Knowledge and interaction: A synthetic agenda for the learning sciences (pp. 72–108). New York: Routledge.
  • Heaton, J. (2008). Secondary analysis of qualitative data: An overview. Historical Social Research, 33(3), 33–45.
  • King, D. T. (2009). Context-based chemistry: Creating opportunities for fluid transitions between concepts and context. Teaching Science: The Journal of the Australian Science Teachers Association, 55(4), 13–19.
  • King, D. T., & Ritchie, S. M. (2013). Academic success in context-based chemistry: Demonstrating fluid transitions between concepts and contexts. International Journal of Science Education, 35(7), 1159–1182. doi: 10.1080/09500693.2013.774508
  • Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press.
  • Levrini, O., Fantini, P., Tasquier, G., Pecori, B., & Levin, M. (2015). Defining and operationalizing appropriation for science learning. Journal of the Learning Sciences, 24(1), 93–136. doi: 10.1080/10508406.2014.928215
  • Maeyer, J., & Talanquer, V. (2013). Making predictions about chemical reactivity: Assumptions and heuristics. Journal of Research in Science Teaching, 50(6), 748–767. doi: 10.1002/tea.21092
  • Mahaffy, P. G., Holme, T. A., Martin-Visscher, L., Martin, B. E., Versprille, A., Kirchoff, M., … Towns, M. (2017). Beyond “inert” ideas to teaching general chemistry from rich contexts: Visualizing the chemistry of climate change (VC3). Journal of Chemical Education. doi: 10.1021/acs.jchemed.6b01009
  • Margolis, E. (1998). How to acquire a concept. Mind & Language, 13(3), 347–369. doi: 10.1111/1468-0017.00081
  • Moon, A., Stanford, C., Cole, R., & Towns, M. (2016). The nature of students’ chemical reasoning employed in scientific argumentation in physical chemistry. Chemistry Education Research and Practice, 17(2), 353–364. doi: 10.1039/C5RP00207A
  • Mortimer, E. F., & El-Hani, C. N. (2014). Conceptual profiles: A theory of teaching and learning scientific concepts. Dordrecht: Springer.
  • Ngai, C., & Sevian, H. (2017). Capturing chemical identity thinking. Journal of Chemical Education, 94(2), 137–148. doi: 10.1021/acs.jchemed.6b00387
  • Pilot, A., & Bulte, A. M. W. (2006). Editorial: Why do you “need to know”? context-based education. International Journal of Science Education, 28(9), 953–956. doi: 10.1080/09500690600702462
  • Rates, C. A., Mulvey, B. K., & Feldon, D. F. (2016). Promoting conceptual change for complex systems understanding: Outcomes of an agent-based participatory simulation. Journal of Science Education and Technology, 25(4), 610–627. doi: 10.1007/s10956-016-9616-6
  • Roberts, D. A. (1982). Developing the concept of “curriculum emphasis” in science education. Science Education, 66, 243–260. doi: 10.1002/sce.3730660209
  • Scherr, R. E., & Hammer, D. (2009). Student behavior and epistemological framing: Examples from collaborative active-learning activities in physics. Cognition and Instruction, 27(2), 147–174. doi: 10.1080/07370000902797379
  • Sevian, H., & Bulte, A. M. W. (2015). Learning chemistry to enrich students’ views on the world they live in. In I. Eilks & A. Hofstein (Eds.), Relevant chemistry education (pp. 55–78). Rotterdam: Sense Publishers.
  • Sevian, H., & Stains, M. (2013). Implicit assumptions and progress variables in a learning progression about structure and motion of matter. In G. Tsaparlis & H. Sevian (Eds.), Concepts of matter in science education (pp. 69–94). Dordrecht: Springer.
  • Sevian, H., & Talanquer, V. (2014). Rethinking chemistry: A learning progression on chemical thinking. Chemistry Education Research and Practice, 15(1), 10–23. doi: 10.1039/C3RP00111C
  • Stains, M., Escriu-Sune, M., Molina Alvarez de Santizo, M. L., & Sevian, H. (2011). Assessing secondary and college students’ implicit assumptions about the particulate nature of matter: Development and validation of the structure and motion of matter survey. Journal of Chemical Education, 88(10), 1359–1365. doi: 10.1021/ed1002509
  • Stains, M., & Sevian, H. (2010). The structure and motion of matter survey. Retrieved from https://acctproject.org/formative-assessments/samm-survey
  • Stains, M., & Sevian, H. (2015). Uncovering implicit assumptions: A large-scale study on students’ mental models of diffusion. Research in Science Education, 45(6), 807–840. doi: 10.1007/s11165-014-9450-x
  • Szteinberg, G., Balicki, S., Banks, G., Clinchot, M., Cullipher, S., Huie, R., … Sevian, H. (2014). Collaborative professional development in chemistry education research: Bridging the gap between research and practice. Journal of Chemical Education, 91(9), 1401–1408. doi: 10.1021/ed5003042
  • Taconis, R., den Brok, P., & Pilot, A. (Eds). (2016). Teachers creating context-based learning environments in science. Dordrecht: Springer.
  • Talanquer, V. (2006). Common sense chemistry: A model for understanding students’ alternative conceptions. Journal of Chemical Education, 83(5), 811–816. doi: 10.1021/ed083p811
  • Talanquer, V. (2009). On cognitive constraints and learning progressions: The case of structure of matter. International Journal of Science Education, 31(15), 2123–2136. doi: 10.1080/09500690802578025
  • Talanquer, V., & Pollard, J. (2015). Chemical thinking. Tucson: University of Arizona.
  • Van Aalsvoort, J. M. (2000). Chemistry in products (Ph.D. dissertation). Utrecht University, Utrecht, The Netherlands.
  • Watkins, J., & Elby, A. (2013). Context dependence of students’ views about the role of equations in understanding biology. CBE-Life Sciences Education, 12(2), 274–286. doi: 10.1187/cbe.12-11-0185
  • Weinrich, M. L., & Talanquer, V. (2015). Mapping students’ conceptual modes when thinking about chemical reactions used to make a desired product. Chemistry Education Research and Practice, 16(3), 561–577. doi: 10.1039/C5RP00024F
  • Wilensky, U., & Stroup, W. (2002). Participatory simulations: Envisioning the networked classroom as a way to support systems learning for all. Paper presented April 2002 at the American Educational Research Association, New Orleans, LA.
  • Wilson, A. L. (1993). The promise of situated cognition. New Directions for Adult and Continuing Education 1993(57), 71–79. doi: 10.1002/ace.36719935709
  • Yu, K. C., Fan, S. C., & Lin, K. Y. (2015). Enhancing students’ problem-solving skills through context-based learning. International Journal of Science and Mathematics Education, 13(6), 1377–1401. doi: 10.1007/s10763-014-9567-4
  • Zhang, H., Li, Y., Zhang, Y., & Seiler, M. (2014). Improving real estate education through the use of agent-based participatory simulations and GIS in an artificial housing market. Journal of Real Estate Practice and Education, 17(2), 125–138.
  • Zohar, A., & Dori, Y. J. (2003). Higher order thinking skills and low-achieving students: Are they mutually exclusive? Journal of the Learning Sciences, 12(2), 145–181. doi: 10.1207/S15327809JLS1202_1
  • Zohar, A. & Levy, S.T. (2017, February 14–15). Attraction vs. Repulsion – learning about chemical bonding with the ELI-chem simulation. Chais conference on instructional technologies research. Israel: Open University.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.