2,654
Views
8
CrossRef citations to date
0
Altmetric
Articles

Making inquiry-based science learning visible: the influence of CVS and cognitive skills on content knowledge learning in guided inquiry

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1812-1831 | Received 26 Mar 2018, Accepted 22 Jul 2018, Published online: 13 Aug 2018

References

  • Abd-El-Khalick, F., BouJaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., … Tuan, H.-l. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397–419. doi:10.1002/sce.10118
  • Alfieri, L., Brooks, P. J., Aldrich, N. J., & Tenenbaum, H. R. (2011). Does discovery-based instruction enhance learning? Journal of Educational Psychology, 103(1), 1–18. https://doi.org/10.1037/a0021017
  • Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry. Journal of Science Teacher Education, 13(1), 1–12. doi:10.1023/A:1015171124982
  • Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417–423. doi: 10.1016/S1364-6613(00)01538-2
  • Baxter, G. P., & Shavelson, R. J. (1994). Science performance assessments: Benchmarks and surrogates. International Journal of Educational Research, 21(3), 279–298. doi:10.1016/S0883-0355(06)80020-0
  • Bell, R. L., Smetana, L. K., & Binns, I. C. (2005). Simplifying inquiry instruction. The Science Teacher, 72(7), 30–33.
  • Boone, W. J., Staver, J. R., & Yale, M. S. (2014). Rasch analysis in the human sciences. Dordrecht: Springer.
  • Bullock, M., Sodian, B., & Koerber, S. (2009). Doing experiments and understanding science: Development of scientific reasoning from childhood to adulthood. In W. Schneider & M. Bullock (Eds.), Human development from early childhood to early adulthood. Findings from the Munich longitudinal study (pp. 173–197). Mahwah, NJ: Lawrence Erlbaum.
  • Carolan, T. F., Hutchins, S. D., Wickens, C. D., & Cumming, J. M. (2014). Costs and benefits of more learner freedom: Meta-analyses of exploratory and learner control training methods. Human Factors, 56(5), 999–1014. doi:10.1177/0018720813517710
  • Chen, Z., & Klahr, D. (1999). All other things being equal: Acquisition and transfer of the control of variables strategy. Child Development, 70(5), 1098–1120. doi:10.1111/1467-8624.00081
  • Chiappetta, E. L. (1997). Inquiry-based science: Strategies and techniques for encouraging inquiry in the classroom. Science Teacher, 64(7), 22–26.
  • Croker, S., & Buchanan, H. (2011). Scientific reasoning in a real-world context: The effect of prior belief and outcome on childrens hypothesis-testing strategies. British Journal of Developmental Psychology, 29, 409–424. doi: 10.1348/026151010X496906
  • Dewey, J. (1910). Science as subject-matter and as method. Science, 31(787), 121–127. doi:10.1126/science.31.787.121
  • Dewey, J. (2002). Logik : Die theorie der forschung [logic: The theory of inquiry] (1st ed.). Suhrkamp: Frankfurt am Main.
  • Embretson, S. E. (1991). A multidimensional latent trait model for measuring learning and change. Psychometrika, 56(3), 495–515. doi:10.1007/BF02294487
  • Fischer, F., Kollar, I., Ufer, S., Sodian, B., Hussmann, H., Pekrun, R., … Eberle, J. (2014). Scientific reasoning and argumentation: Advancing an interdisciplinary research agenda in education. Frontline Learning Research, 28–45. doi:10.14786/flr.v2i3.96
  • Heller, K. A., & Perleth, C. (2000). Kognitiver fähigkeitstest für 4. Bis 12. Klassen [cognitive abilities test of students from 4th to 12th grade]. Göttingen: Hogrefe.
  • Kaplan, D. (2005). Structural equation modeling: Foundations and extensions (Nachdr). Advanced quantitative techniques in the social sciences: Vol. 10. Thousand Oaks, CA: Sage Publ.
  • Kiefer, T., Robitzsch, A., & Wu, M. (2017). TAM: Test Analysis Modules: R package version 1.99999-31. Retrieved from https://CRAN.R-project.org/package = TAM
  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86. doi:10.1207/s15326985ep4102_1
  • Klahr, D. (2000). Exploring science: The cognition and development of discovery processes. Cambridge, MA: MIT Press.
  • Klahr, D., Chen, Z., & Toth, E. (2001). From cognition to instruction to cognition: A case study in elementary school science instruction. In K. D. Crowley, C. D. Schunn, & T. Okada (Eds.), Designing for science. Implications from everyday, classroom, and professional settings (pp. 209–250). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Klahr, D., Triona, L. M., & Williams, C. (2007). Hands on what? The relative effectiveness of physical versus virtual materials in an engineering design project by middle school children. Journal of Research in Science Teaching, 44(1), 183–203. doi:10.1002/tea.20152
  • KMK. (2005). Bildungsstandards im fach physik für den mittleren schulabschluss: Beschluss vom 16.12. 2004. München: Wolters Kluwer Deutschland GmbH.
  • Koerber, S., Mayer, D., Osterhaus, C., Schwippert, K., & Sodian, B. (2015). The development of scientific thinking in elementary school: A comprehensive inventory. Child Development, 86(1), 327–336. doi:10.1111/cdev.12298
  • Koslowski, B. (1996). Theory and evidence: The development of scientific reasoning (1st ed.). learning, development, and conceptual change. Cambridge, MA: MIT Pr.
  • Künsting, J., Thillmann, H., Wirth, J., Fischer, H. E., & Leutner, D. (2008). Strategisches experimentieren im naturwissenschaftlichen unterricht. Psychologie in Erziehung und Unterricht, 55(1), 1–15. Retrieved from http://www.ruhr-uni-bochum.de/lehrlernforschung/website_eng/pdf/kuensting_et_al_2008.pdf
  • Lawson, A. E., & Wollman, W. T. (1976). Encouraging the transition from concrete to formal cognitive functioning-an experiment. Journal of Research in Science Teaching, 13(5), 413–430. doi:10.1002/tea.3660130505
  • Lazonder, A. W., & Harmsen, R. (2016). Meta-Analysis of inquiry-based learning: Effects of guidance. Review of Educational Research, 86(3), 681–718. doi:10.3102/0034654315627366
  • Lincare, M. J. (2002). What do infit and outfit, mean-square and standardized mean? Rasch Measurement Transactions, 16(2), 878.
  • Linn, M. C., Clement, C., & Pulos, S. (1983). Is it formal if it's not physics? The influence of content on formal reasoning). Journal of Research in Science Teaching, 20(8), 755–770. doi:10.1002/tea.3660200806
  • Marschner, J., Thillmann, H., Wirth, J., & Leutner, D. (2012). Wie lässt sich die experimentierstrategie-nutzung fördern? [How can the use of strategies for experimentation be fostered? – A comparison of differently designed prompts]. Zeitschrift für Erziehungswissenschaft, 15(1), 77–93. doi:10.1007/s11618-012-0260-5
  • Mayer, D., Sodian, B., Koerber, S., & Schwippert, K. (2014). Scientific reasoning in elementary school children: Assessment and relations with cognitive abilities. Learning and Instruction, 29, 43–55. doi:10.1016/j.learninstruc.2013.07.005
  • McElhaney, K. W. (2011). Making controlled experimentation more informative in inquiry investigations (Dissertation). University of California, Berkeley, CA.
  • Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction-what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474–496. doi.org/10.1002/tea.20347
  • Morris, B. J., Croker, S., Masnick, A., & Zimmerman, C. (2012). The emergence of scientific reasoning. In H. Kloos (Ed.), Current topics in children's learning and cognition (pp. 61–82). InTech. doi.org/10.5772/53885
  • National Research Council. (2010). Exploring the intersection of science education and 21st century skills: A workshop summary. Washington, DC: National Academies Press.
  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies.
  • Nehring, A., Nowak, K. H., Belzen, A. U. z., & Tiemann, R. (2015). Predicting students’ skills in the context of scientific inquiry with cognitive, motivational, and sociodemographic variables. International Journal of Science Education, 37(9), 1343–1363. doi:10.1080/09500693.2015.1035358
  • NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.
  • Osborne, J. (2013). The 21st century challenge for science education: Assessing scientific reasoning. Thinking Skills and Creativity, 10, 265–279. doi:10.1016/j.tsc.2013.07.006
  • Osterhaus, C., Koerber, S., & Sodian, B. (2017). Scientific thinking in elementary school: Children's social cognition and their epistemological understanding promote experimentation skills. Developmental Psychology, 53(3), 450–462. doi:10.1037/dev0000260
  • Popper, K. R. (1966). Logik der forschung [The logic of scientific discovery]. Tübingen: J.C.B. Mohr.
  • Ross, J. A. (1988). Controlling variables: A meta-analysis of training studies. Review of Educational Research, 58(4), 405–437. doi:10.3102/00346543058004405
  • Rosseel, Y. (2012). Lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1–36. doi: 10.18637/jss.v048.i02
  • Ruiz-Primo, M. A., & Shavelson, R. J. (1996). Rhetoric and reality in science performance assessments: An update. Journal of Research in Science Teaching, 33(10), 1045–1063. doi: 10.1002/(SICI)1098-2736(199612)33:10<1045::AID-TEA1>3.0.CO;2-S
  • Schneider, W., Schlagmüller, M., & Ennemoser, M. (2007). LGVT 6-12 lesegeschwindigkeits- und -verständnistest für die klassen 6-12 [reading speed and reading comprehension test for grade 6 to 12]. Göttingen: Hogrefe.
  • Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J. (2006). Reporting structural equation modeling and confirmatory factor analysis results: A review. The Journal of Educational Research, 99(6), 323–338. doi:10.3200/JOER.99.6.323-338
  • Schwichow, M., Croker, S., Zimmerman, C., Höffler, T., & Härtig, H. (2016). Teaching the control-of-variables strategy: A meta-analysis. Developmental Review, 39(1), S. 37–S. 63. doi:10.1016/j.dr.2015.12.001
  • Schwichow, M., Zimmerman, C., Croker, S., & Härtig, H. (2016). What students learn from hands-on activities. Journal of Research in Science Teaching (JRST), 53(7), S. 980–S.1002. doi:10.1002/tea.21320
  • Solomon, J. (1994). The rise and fall of constructivism. Studies in Science Education, 23(1), 1–19. doi:10.1080/03057269408560027
  • van der Graaf, J., Segers, E., & Verhoeven, L. (2016). Scientific reasoning in kindergarten: Cognitive factors in experimentation and evidence evaluation. Learning and Individual Differences, 49, 190–200. doi:10.1016/j.lindif.2016.06.006
  • Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54(3), 427–450. doi:10.1007/BF02294627
  • Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27(2), 172–223. Retrieved from http://www.cogsci.ucsd.edu/~deak/classes/EDS115/ZimmermanSciThinkDR07.pdf doi: 10.1016/j.dr.2006.12.001
  • Zimmerman, C., & Croker, S. (2013). Learning science through inquiry. In G. J. Feist, & M. E. Gorman (Eds.), Handbook of the psychology of science (pp. 49–70). New York: Springer Publishing Company.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.