1,020
Views
2
CrossRef citations to date
0
Altmetric
Articles

How do students coordinate context-based information and elements of their own knowledge? An analysis of students’ context-based problem-solving in thermodynamics

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1935-1956 | Received 16 Oct 2017, Accepted 19 Aug 2018, Published online: 14 Sep 2018

References

  • Abrams, J. (2001). Teaching mathematical modeling and the skills of representation. In A. Cuoco & F. Curcio (Eds.), The roles of representation in school mathematics (Vol. 63, pp. 269–282). Reston, VA: National Council of Teachers of Mathematics.
  • Bennett, J., Lubben, F., & Hogarth, S. (2007). Bringing science to life: A synthesis of the research evidence on the effects of context-based and STS approaches to science teaching. Science Education, 91(3), 347–370. doi: 10.1002/sce.20186
  • Boekaerts, M. (1992). The adaptable learning process: Initiating and maintaining behavioral change. Journal of Applied Psychology: An International Review, 41, 377–397. doi: 10.1111/j.1464-0597.1992.tb00713.x
  • Boekaerts, M. (1993). Being concerned with well-being and with learning. Educational Psychologist, 28, 149–167. doi: 10.1207/s15326985ep2802_4
  • Bunge, M. (1973). Method, model and matter. Dordrecht: Reidel. (Synthese library, 44).
  • Charles, R., Lester, F. K., & O'Daffer, P. G. (1987). How to evaluate progress in problem solving (2nd ed.). NCTM “How to … ” series. Reston, VA: National Council of Teachers of Mathematics.
  • Chi, M., Feltovich, P., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5(2), 121–152. doi: 10.1207/s15516709cog0502_2
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd rev ed.). HIllsdale, NJ: Lawrence Erlbaum Associates Inc.
  • Creswell, J. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research (4th ed.). Boston: Pearson.
  • Digel, S., Löffler, P., & Kauertz, A. (2016, June). Edge in problem solving? Florina, Greece: EARLI SIG 3 Summer School.
  • Durik, A., & Harackiewicz, J. (2007). Different strokes for different folks: How individual interest moderates the effects of situational factors on task interest. Journal of Educational Psychology, 99(3), 597–610. doi: 10.1037/0022-0663.99.3.597
  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. doi: 10.3758/BF03193146
  • Ganzeboom, H. B. G., Graaf, P. M. de, & Treiman, D. J.. (1992). A standard international socio-economic index of occupational status. Social Science Research, 21(1), 1–56. doi: 10.1016/0049-089X(92)90017-B
  • Gentner, D. (2002). Analogical reasoning, psychology of Encyclopedia of Cognitive Science. London: Nature Publishing Group.
  • Gentner, D., & Smith, L. (2013). Analogical learning and reasoning. In D. Reisberg (Ed.), The Oxford handbook of cognitive psychology (pp. 668–681). New York: Oxford University Press.
  • Gilbert, J. K. (2006). On the nature of “context” in chemical education. International Journal of Science Education, 28(9), 957–976. doi: 10.1080/09500690600702470
  • Harackiewicz, J., Durik, A., Barron, K., Linnenbrink, E., & Tauer, J. (2008). The role of achievement goals in the development of interest: Reciprocal relations between achievement goals, interest, and performance. Journal of Educational Psychology, 100, 398–416. doi: 10.1037/0022-0663.100.1.105
  • Harackiewicz, J., & Hulleman, C. (2010). The importance of interest: The role of achievement goals and task values in promoting the development of interest. Social and Personality Psychology Compass, 4, 42–52. doi: 10.1111/j.1751-9004.2009.00207.x
  • Harp, S., & Mayer, R. (1997). The role of interest in learning from scientific text and illustrations: On the distinction between emotional interest and cognitive interest. Journal of Educational Psychology, 89(1), 92–102. doi: 10.1037/0022-0663.89.1.92
  • Harp, S., & Mayer, R. (1998). How seductive details do their damage: A theory of cognitive interest in science learning. Journal of Educational Psychology, 90(3), 414–434. doi: 10.1037/0022-0663.90.3.414
  • Hidi, S. (1990). Interest and its contribution as a mental resource for learning. Review of Educational Research, 60, 549–571. doi: 10.3102/00346543060004549
  • Hidi, S., & Renninger, K. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–127. doi: 10.1207/s15326985ep4102_4
  • Hidi, S., Renninger, K., & Krapp, A. (2004). Interest, a motivational variable that combines affective and cognitive functioning. In D. Dai, & R. Sternberg (Eds.), Motivation, emotion, and cognition. (pp. 89–115). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Kauertz, A., & Fischer, H. E. (2006). Assessing students’ level of knowledge and analysing the reasons for learning difficulties in physics by rasch analysis. In W. J. Boone & X. Liu. Applications of Rasch measurement in science education (pp. 212–246). Maple Grove, MN: JAM Press.
  • Kauertz, A., Löffler, P., & Fischer, H. E. (2015). Physikaufgaben [Physics-tasks]. In E. Kircher, R. Girwidz, & P. Häußler (Eds.), Springer-Lehrbuch. Physikdidaktik. Theorie und Praxis [Springer-textbook. Didactics in physics. Theory and practice] (3rd ed., pp. 451–475). Berlin: Springer Berlin.
  • Kintsch, W. (1980). Learning from text, levels of comprehension, or: Why anyone would read a story anyway. Poetics, 9, 87–98. doi: 10.1016/0304-422X(80)90013-3
  • Krapp, A. (1999). Interest, motivation and learning: An educational-psychological perspective. European Journal of Psychology of Education, 14(1), 23–40. doi: 10.1007/BF03173109
  • Kuhn, J., & Müller, A. (2014). Context-based science education by newspaper story problems: A study on motivation and learning effects. Perspectives in Science, 2, 5–21. doi: 10.1016/j.pisc.2014.06.001
  • Landis, J., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174. doi: 10.2307/2529310
  • Larkin, J., McDermott, J., Simon, D., & Simon, H. A. (1980b). Models of competence in solving physics problems. Cognitive Science, 4(4), 317–345. doi: 10.1207/s15516709cog0404_1
  • Larkin, J., McDermott, J., Simon, D., & Simon, H. (1980a). Expert and novice performance in solving physics problems. Science (New York, N.Y.), 208(4450), 1335–1342. doi: 10.1126/science.208.4450.1335
  • Leiss, D., Schukajlow, S., Blum, W., Messner, R., & Pekrun, R. (2010). The role of the situation model in mathematical modelling—task analyses, student competencies, and teacher interventions. Journal für Mathematik-Didaktik, 31(1), 119–141. doi: 10.1007/s13138-010-0006-y
  • Liepmann, D., Beauducel, A., Brocke, A., & Amthauer, R. (2007). Intelligenz-Struktur-Test 2000R [intelligence-structure-test 2000 R] (2nd ed.). Göttingen, Wien u.a: Hogrefe Verl. f. Psychologie.
  • Löffler, P. (2016). Modellanwendung in Problemlöseaufgaben -- Wie wirkt Kontext? Studien zum Physik- und Chemielernen: Vol. 205. [Applying models in problem-solving tasks – How does context take effect? Studies on learning physics and chemistry]. Berlin: Logos Berlin.
  • Löffler, P., & Kauertz, A. (2014). Applying physics models in context-based tasks in physics education. In C. Constantinou, N. Papadouris, & A. Hadjigeorgiou (Eds.), E-Book proceedings of the ESERA 2013 Conference (pp. 171–179). Nicosia: European Science Education Research Association. Strand 10.
  • Löffler, P., & Kauertz, A. (2015). Modellanwendung in kontextualisierten Problemlöseaufgaben [Applying models in contextualized problem solving tasks]. In S. Bernholt (Ed.), Heterogenität und Diversität - Vielfalt der Voraussetzungen im naturwissenschaftlichen Unterricht (Vol. 35, pp. 648–650). Kiel: IPN.
  • Löffler, P., & Kauertz, A. (2016a). Modellanwendung in Problemlöseaufgaben: Wie wirkt Kontext? [Applying models in problem-solving tasks – How does context take effect?]. In C. Maurer (Ed.), Authentizität und Lernen - das Fach in der Fachdidaktik. GDCP, Jahrestagung in Berlin 2015 (Vol. 36, pp. 41–43). Regensburg: Universität Regensburg.
  • Löffler, P., & Kauertz, A. (2016b, September). Kontexteffekte in Problemlöseaufgaben: Wie nutzen Lernende Modelle? [Context-effects in problem-solving tasks: How do learners use models?]. Zürich, Suisse: Annual Conference of the GDCP.
  • Mayer, R. (1992). Thinking, problem solving, cognition (2nd ed.). A series of books in psychology. New York, NY: Freeman.
  • Mayer, R. (1998). Cognitive, metacognitive, and motivational aspects of problem-solving. Instructional Science, 26(1/2), 49–63. doi: 10.1023/A:1003088013286
  • Mayer, R. (2013). Problem solving. In D. Reisberg (Ed.), The Oxford handbook of cognitive psychology (pp. 769–778). New York: Oxford University Press.
  • Mestre, J. (2002). Probing adults’ conceptual understanding and transfer of learning via problem posing. Journal of Applied Developmental Psychology, 23(1), 9–50. doi: 10.1016/S0193-3973(01)00101-0
  • Mikelskis-Seifert, S. (2006). Im Physikunterricht modellieren: Modellmethode als epistemologisches und didaktisches Konzept [Modelling in physics-lessons: Model-method as epistemological and didactical concept]. In H. F. Mikelskis (Ed.), Physik-Didaktik [Physics didactics] (pp. 120–138). Berlin: Cornelsen Scriptor.
  • Park, J., & Lee, L. (2004). Analysing cognitive or non-cognitive factors involved in the process of physics problem-solving in an everyday context. International Journal of Science Education, 26(13), 1577–1595. doi: 10.1080/0950069042000230767
  • Pólya, G. (1985). How to solve it: A new aspect of mathematical method (2nd ed.). Princeton, N.J: Princeton University Press.
  • Prenzel, M. (1992). The selective persistence of interest. In K. A. Renninger, S. Hidi, & A. Krapp (Eds.), The role of interest in learning and development (pp. 71–98). Hillsdale, NJ: Erlbaum.
  • Prenzel, M. (2008). PISA 2006 in Deutschland: Die Kompetenzen der Jugendlichen im dritten Ländervergleich [Competences of adolescents in the third state-comparison]. Münster, New York: Waxmann.
  • Renninger, K. A. (1990). Children’s play interests, representation, and activity. In R. Fivush, & J. Hudson (Eds.), Emory symposia in cognition: Vol. 3. Knowing and remembering in young children (pp. 127–165). Cambridge, NY: Cambridge University Press.
  • Renninger, K., & Hidi, S. (2002). Student interest and achievement: Developmental issues raised by a case study. In A. Wigfield, & J. Eccles (Eds.), Development of achievement motivation (pp. 173–195). New York: Academic Press.
  • Renninger, K. A., Hidi, S., & Krapp, A. (Hg.). (1992). The role of interest in learning and development. Hillsdale, NJ: Erlbaum.
  • Reusser, K. (1985). From situation to equation: On formulation, understanding and solving situation problems. Technical report No. 143, University of Colorado.
  • Rheinberg, F., Vollmeyer, R., & Burns, B. D. (2001). QCM: A questionnaire to assess current motivation in learning situations. Retrieved from http://www.psych.uni-potsdam.de/people/rheinberg/messverfahren/FAMLangfassung.pdf
  • Ryan, R., & Deci, E. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68–78. doi: 10.1037/0003-066X.55.1.68
  • Schmitt, N. (1996). Uses and abuses of coefficient alpha. Psychological Assessment, 8(4), 350–353. doi:10.1037/1040-3590.8.4.350.
  • Spinath, B. (2015). Lernmotivation. In H. Reinders, H. Ditton, C. Gräsel, & B. Gniewosz (Eds.), Empirische bildungsforschung (pp. 55–67). Wiesbaden: Springer VS.
  • Taasoobshirazi, G., & Carr, M. (2008). A review and critique of context-based physics instruction and assessment. Educational Research Review, 3(2), 155–167. doi: 10.1016/j.edurev.2008.01.002
  • van Vorst, H., Dorschu, A., Fechner, S., Kauertz, A., Krabbe, H., & Sumfleth, E. (2014). Charakterisierung und Strukturierung von Kontexten im naturwissenschaftlichen Unterricht – Vorschlag einer theoretischen Modellierung [Characterization und structuring of contexts in science lessons – Proposal of a theoretical modelling]. Zeitschrift für Didaktik der Naturwissenschaften [Journal for Science-Didactics], 21(1), 29–39. doi: 10.1007/s40573-014-0021-5
  • Vollemeyer, R., & Rheinberg, F. (2006). Motivational effects on self-regulated learning with different tasks. Educational Psychologicy Review, 18(3), 239–253. doi: 10.1007/s10648-006-9017-0
  • Wade, S. (1992). How interest affects learning from text. In K. Renninger, S. Hidi, & A. Krapp (Eds.), The role of interest in learning and development (pp. 255–278). Hillsdale, NJ: Erlbaum.
  • Walpuski, M., Ropohl, M., & Sumfleth, E. (2011). Students’ knowledge about chemical reactions – development and analysis of standard-based test items. Chemical Education Research and Practice, 12(2), 174–183. doi:10.1039/C1RP90022F.
  • Yeo, S., & Zadnik, M. (2001). Introductory thermal concept evaluation: Assessing students’ understanding. The Physics Teacher, 39(8), 496–504. doi: 10.1119/1.1424603

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.