781
Views
1
CrossRef citations to date
0
Altmetric
Articles

Primary and lower secondary students’ perceptions of representational practices in science learning: focus on drawing and writing

ORCID Icon
Pages 3003-3025 | Received 30 Jan 2020, Accepted 06 Nov 2020, Published online: 29 Nov 2020

References

  • Ainley, M. (2012). Students’ interest and engagement in classroom activities. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), International handbook of research on student engagement (pp. 283–302). Springer-Verlag.
  • Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 333(6046), 1096–1097. https://doi.org/10.1126/science.1204153
  • Aubusson, P. J., Harrison, A. G., & Ritchie, S. M. (2006). Metaphor and analogy in science education. Springer.
  • Bechtel, W. (2017). Diagrammatic reasoning. In L. Mangani & T. Bertolotti (Eds.), Springer handbook of model-based science (1st ed., Vol. 21, pp. 605–618). Springer.
  • Bond, T. G., & Fox, C. M. (2015). Applying the Rasch model: Fundamental measurement in the human sciences (3rd ed.). Routledge.
  • Boone, W. J., Staver, J. R., & Yale, M. S. (2014). Rasch analysis in the human sciences. Springer.
  • Britner, S. L., & Pajares, F. (2006). Sources of science self-efficacy beliefs of middle school students. Journal of Research in Science Teaching, 43(5), 485–499. https://doi.org/10.1002/tea.20131
  • Brooks, M. (2009). Drawing, visualisation and young children’s exploration of ‘Big ideas’. International Journal of Science Education, 31(3), 319–341. https://doi.org/10.1080/09500690802595771
  • Buzan, T. (2005). Mind maps for kids: An introduction. Thorsons.
  • Carlsen, W. S. (2007). Language and science learning. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 57–74). Lawrence Erlbaum Associates.
  • Daniel, K. L. (Ed.). (2018). Towards a framework for representational competence in science education. Springer.
  • Devetak, I., & Glažar, S. A. (2009). The influence of 16-year-old students’ gender, mental abilities, and motivation on their reading and drawing submicro representations achievements. International Journal of Science Education, 32(12), 1561–1593. https://doi.org/10.1080/09500690903150609
  • diSessa, A. A. (2004). Metarepresentation: Native competence and targets for instruction. Cognition and Instruction, 22(3), 293–331. https://doi.org/10.1207/s1532690xci2203_2
  • Duit, R. (1991). On the role of analogies and metaphors in learning science. Science Education, 75(6), 649–672. https://doi.org/10.1002/sce.3730750606
  • Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38(1), 39–72. https://doi.org/10.1080/03057260208560187
  • Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of Educational Research, 74(1), 59–109. https://doi.org/10.3102/00346543074001059
  • Gilbert, J. K. (2008). Visualization: An emergent field of practice and enquiry in science education. In J. K. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and practice in science education (pp. 3–24). Springer.
  • Gilbert, J. K., Reiner, M., & Nakhleh, M. (2008). Visualization: Theory and practices in science education. Springer.
  • Gilbert, J. K., & Treagust, D. F. (Eds.). (2009). Multiple representations in chemical education. Springer.
  • Goto Butler, Y. (2011). Gakushyugengo toha Nanika?: Kyouka Gakushyu ni Hitsuyouna Genngo Nouryoku [What is academic language?: The language abilities needed for academic studies]. Sanseidou.
  • Greene, B. A. (2015). Measuring cognitive engagement with self-report scales: Reflections from over 20 years of research. Educational Psychologist, 50(1), 14–30. https://doi.org/10.1080/00461520.2014.989230
  • Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1014–1017. https://doi.org/10.1080/095006900416884
  • Henderson, G. (1999). Learning with diagrams. Australian Science Teachers’ Journal, 45(2), 17–25.
  • Katz, P. (Ed.). (2017). Drawing for science education: An international perspective. Sense Publishers.
  • Kelly-Jackson, C., & Delacruz, S. (2014). Using visual literacy to teach science academic language: Experiences from three preservice teachers. Action in Teacher Education, 36(3), 192–210. https://doi.org/10.1080/01626620.2014.917364
  • Khine, M. S. (Ed.). (2017). Visual-spatial ability in STEM education. Springer.
  • Kozma, R., & Russell, J. (2005). Students becoming chemists: Developing representational competence. In J. K. Gilbert (Ed.), Visualization in science education (pp. 121–146). Springer.
  • Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34(9), 949–968. https://doi.org/10.1002/(SICI)1098-2736(199711)34:9<949::AID-TEA7>3.0.CO;2-U
  • Kress, G., Jewitt, C., Ogborn, J., & Tsatsarelis, C. (2001). Multimodal teaching and learning; the rhetorics of the science classroom. Continuum.
  • Latour, B. (1987). Science in action. Harvard University Press.
  • Lee, V. R. (2010). Adaptations and continuities in the use and design of visual representations in US middle school science textbooks. International Journal of Science Education, 32(8), 1099–1126. https://doi.org/10.1080/09500690903253916
  • Lemke, J. L. (1990). Talking science: Language, learning and values. Ablex.
  • Levine, T., & Gelman-Caspar, Z. (1996). Informal science writing produced by boys and girls: Writing preference and quality. British Educational Research Journal, 22(4), 421–439. https://doi.org/10.1080/0141192960220404
  • Linnenbrink, E. A., & Pintrich, P. R. (2003). The role of self-efficacy beliefs in student engagement and learning in the classroom. Reading Writing Quarterly, 19(2), 119–137. https://doi.org/10.1080/10573560308223
  • Liu, X. (2010). Using and developing measurement instruments in science education: A Rasch modelling approach. Information Age Publishing.
  • Liu, Y., & Treagust, D. F. (2013). Content analysis of diagrams in secondary school science textbooks. In M. S. Khine (Ed.), Critical analysis of science textbooks: Evaluating instructional effectiveness (pp. 287–300). Springer.
  • Matsubara, K. (2018). Elementary science education in Japan. In Y.-J. Lee & J. Tan (Eds.), Primary science education in East Asia: Contemporary trends and issues in science education (pp. 49–77). Springer.
  • McDermott, M. A., & Hand, B. (2015). Improving scientific literacy through multimodal communication: Strategies, benefits and challenges. School Science Review, 97(359), 15–20.
  • McTigue, E. M., & Flowers, A. C. (2012). Science visual literacy: Learners’ perceptions and knowledge of diagrams. The Reading Teachers, 64(8), 578–589. https://doi.org/10.1598/RT.64.8.3
  • Ministry of Education, Culture, Sports, Science and Technology. (2008a). Shougakkou gakushuu sidou youryou kaisetsu rika-hen [Explanation for the course of study for elementary school: Science]. Dainippon Tosho.
  • Ministry of Education, Culture, Sports, Science and Technology. (2008b). Tyuugakkou gakushuu sidou youryou kaisetsu rika-hen [Explanation for the course of study for junior high school: Science]. Dainippon Tosho.
  • Mullis, I. V. S., Martin, M. O., Foy, P., & Hooper, M. (2016). TIMSS 2015 international results in mathematics. http://timssandpirls.bc.edu/timss2015/international-results/
  • Newcombe, N. S. (2016). Improving diagrammatic reasoning in middle school science using conventions of diagrams instruction. Journal of Computer Assisted Learning, 32(4), 374–390. https://doi.org/10.1111/jcal.12143
  • Novak, J. D. (1990). Concept mapping: A useful tool for science education. Journal of Research in Science Teaching, 27(10), 937–949. https://doi.org/10.1002/tea.3660271003
  • Novick, L. R. (2006). The importance of both diagrammatic conventions and domain-specific knowledge for diagram literacy in science: The hierarchy as an illustrative case. In D. Barker-Plummer, R. Cox, & N. Swoboda (Eds.), Diagrammatic representation and inference (pp. 1–11). Springer.
  • OECD. (2015). The ABC of gender equality in education: Aptitude, behaviour, confidence, PISA.
  • OECD. (2019). PISA 2018 assessment and analytical framework.
  • Ogborn, J., Kress, G., Martins, I., & McGillicuddy, K. (1996). Explaining science in the classroom. Open University Press.
  • Pande, P., & Chandrasekharan, S. (2017). Representational competence: Towards a distributed and embodied cognition account. Studies in Science Education, 53(1), 1–43. https://doi.org/10.1080/03057267.2017.1248627
  • Prain, V., & Tytler, R. (2012). Learning through constructing representations in science: A framework of representational construction affordances. International Journal of Science Education, 34(17), 2751–2773. https://doi.org/10.1080/09500693.2011.626462
  • Reeve, J. (2012). A self-determination theory perspective on students’ engagement. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), International handbook of research on student engagement (pp. 149–172). Springer-Verlag.
  • Rosebery, A. S., Warren, B., & Conant, F. R. (1992). Appropriating scientific discourse: Findings from language minority classroom. Journal of the Learning Sciences, 2(1), 61–94. https://doi.org/10.1207/s15327809jls0201_2
  • Roth, W.-M., & McGinn, M. K. (1998). Inscriptions: Toward a theory of representing as social practice. Review of Educational Research, 68(1), 35–59. https://doi.org/10.3102/00346543068001035
  • Roth, W.-M., & Tobin, K. (1997). Cascades of inscriptions and the re-presentation of nature: How numbers, tables, graphs, and money come to re-present a rolling ball. International Journal of Science Education, 19(9), 1075–1091. https://doi.org/10.1080/0950069970190906
  • Rowell, P. M. (1997). Learning in school science: The promises and practices of writing. Studies in Science Education, 30(1), 19–56. https://doi.org/10.1080/03057269708560102
  • Sadler, T. D., & Fowler, S. R. (2006). A threshold model of content knowledge transfer for socioscientific argumentation. Science Education, 90(6), 986–1004. https://doi.org/10.1002/sce.20165
  • Scott, P., Asoko, H., & Leach, J. (2007). Student conceptions and conceptual learning in science. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 31–56). Routledge.
  • Sinatra, G. M., Heddy, B. C., & Lombardi, D. (2015). The challenges of defining and measuring student engagement in science. Educational Psychologist, 50(1), 1–13. https://doi.org/10.1080/00461520.2014.1002924
  • Sutton, C. (1993). Figuring out a scientific understanding. Journal of Research in Science Teaching, 30(10), 1215–1227. https://doi.org/10.1002/tea.3660301005
  • Tippett, C. D. (2016). What recent research on diagrams suggests about learning with rather than learning from visual representations in science. International Journal of Science Education, 38(5), 725–746. https://doi.org/10.1080/09500693.2016.1158435
  • Treagust, D. F., Duit, R., & Fischer, H. E. (Eds.). (2017). Multiple representations in physics education. Springer.
  • Treagust, D. F., & Tsui, C. Y. (Eds.). (2013). Multiple representations in biological education. Springer.
  • Tytler, R., & Osborne, J. (2012). Student attitudes and aspirations towards science. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 597–625). Springer International.
  • Tytler, R., Prain, V., Hubber, P., & Waldrip, B. (Eds.). (2013). Constructing representation to learn in science. Sense Publishers.
  • Tytler, R., Prain, V., Hubber, P., & Waldrip, B. (2018). Representation construction as a core science disciplinary literacy. In K. S. Tang & K. Danielsoon (Eds.), Global development in literacy research for science education (pp. 301–317). Springer.
  • Ubben, I., Salisbury, S. L., & Daniel, K. L. (2019). Combining visual and verbal data to diagnose and assess modelling competence. In A. Upmeier zu Belzen, D. Krüger, & J. van Driel (Eds.), Towards a competence-based view on models and modelling in science education (pp. 99–115). Springer.
  • Uchinokura, S., Kitahara, F., & Shimofurutachi, H. (2018). Shyougakusei no Rikagakusyuu niokeru Zutekihyougenn nitaisuru Ninnsiki no Tokyutyou: Gengotekihyougenn nitaisuru Ninnshiki tono Hikaku ni Motoduite [Characteristics of pupils’ recognition of diagrammatic representation in science learning: A comparison with recognition of linguistic representation]. Journal of Research in Science Education, 59(2), 1–11. https://doi.org/10.11639/sjst.18031
  • van Joolingen, W. R., Aukes, A. V. A., Gijlers, H., & Bollen, L. (2014). Understanding elementary astronomy by making drawing-based models. Journal of Science Education and Technology, 24(2–3), 256–264. https://doi.org/10.1007/s10956-014-9540-6
  • Vasquez, J. A., Comer, M. W., & Troutman, F. (2010). Developing visual literacy in science K–8. NSTA Press.
  • Wallace, C. S., & Hand, B. (2007). Children’s views of writing to learn. In C. S. Wallace, B. Hand, & V. Prain (Eds.), Writing and learning in the science classroom (pp. 91–104). Springer.
  • Wallace, C. S., Hand, B., & Prain, V. (2007). Writing and learning in the science classroom. Springer.
  • Wellington, J., & Osborne, J. (2001). Language and literacy in science education. Open University Press.
  • Yore, L., Bisanz, G. L., & Hand, B. M. (2003). Examining the literacy component of science literacy: 25 years of language arts and science research. International Journal of Science Education, 25(6), 689–725. https://doi.org/10.1080/09500690305018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.