764
Views
4
CrossRef citations to date
0
Altmetric
Articles

Validation of the thermal concept evaluation test for Greek university students’ misconceptions of thermal concepts

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 247-273 | Received 07 Apr 2020, Accepted 14 Dec 2020, Published online: 14 Feb 2021

References

  • Abrahams, I., Homer, M., Sharpe, R., & Zhou, M. (2015). A comparative cross-cultural study of the prevalence and nature of misconceptions in physics amongst English and Chinese undergraduate students. Research in Science & Technological Education, 33(1), 111–130. https://doi.org/10.1080/02635143.2014.987744
  • Acar, Ö. (2019). Investigation of the science achievement models for low and high achieving schools and gender differences in Turkey. Journal of Research in Science Teaching, 56(5), 649–675. https://doi.org/10.1002/tea.21517
  • Adadan, E., & Yavuzkaya, M. N. (2018). Examining the progression and consistency of thermal concepts: A cross-age study. International Journal of Science Education, 40(4), 371–396. https://doi.org/10.1080/09500693.2018.1423711
  • Allen, M. (2014). Misconceptions in primary science (2nd ed.). McGraw-Hill.
  • Alwan, A. A. (2011). Misconceptions of heat and temperature among physics students. Procedia - Social and Behavioral Sciences, 12, 600–614. https://doi.org/10.1016/j.sbspro.2011.02.074
  • Anderson, C. W., Holland, J. D., & Palincsar, A. S. (1997). Canonical and sociocultural approaches to research and reform in science education: The story of Juan and his group. The Elementary School Journal, 97(4), 359–383. https://doi.org/10.1086/461871
  • Anderton, R. S., Evans, T., & Chivers, P. T. (2016). Predicting academic success of health science students for first year anatomy and physiology. International Journal of Higher Education, 5(1), 250–260. https://doi.org/10.5430/ijhe.v5n1p250
  • Baker, F. B. (2001). The basics of item response theory (2nd ed.). ERIC Clearinghouse on Assessment and Evaluation.
  • Başer, M. (2006). Fostering conceptual change by cognitive conflict based instruction on students’ understanding of heat and temperature concepts. Eurasia Journal of Mathematics, Science and Technology Education, 2(2), 96–114. https://doi.org/10.12973/ejmste/75458
  • Beaton, D. E., Bombardier, C., Guillemin, F., & Ferraz, M. B. (2000). Guidlines for the process of cross-cultural adaption of self-report measures. Spine, 25(24), 3186–3191. https://doi.org/10.1097/00007632-200012150-00014
  • Benjamin, T. E., Marks, B., Demetrikopoulos, M. K., Rose, J., Pollard, E., Thomas, A., & Muldrow, L. L. (2017). Development and validation of scientific literacy scale for college preparedness in STEM with freshmen from diverse institutions. International Journal of Science and Mathematics Education, 15(4), 607–623. https://doi.org/10.1007/s10763-015-9710-x
  • Buchholz, J., & Hartig, J. (2019). Comparing attitudes across groups: An IRT-based item-fit statistic for the analysis of measurement invariance. Applied Psychological Measurement, 43(3), 241–250. https://doi.org/10.1177%2F0146621617748323
  • Chiou, G. L., & Anderson, O. R. (2009). A study of undergraduate physics students’ understanding of heat conduction based on mental model theory and an ontology–process analysis. Science Education, 94(5), 825–854. https://doi.org/10.1002/sce.20385
  • Chu, H. E., Treagust, D. F., Yeo, S., & Zadnik, M. (2012). Evaluation of students’ understanding of thermal concepts in everyday contexts. International Journal of Science Education, 34(10), 1509–1534. https://doi.org/10.1080/09500693.2012.657714
  • de Clercq, M., Galand, B., Dupont, S., & Frenay, M. (2013). Achievement among first-year university students: An integrated and contextualised approach. European Journal of Psychology of Education, 28(3), 641–662. https://doi.org/10.1007/s10212-012-0133-6
  • Docktor, J., & Heller, K. (2008). Gender differences in both force concept inventory and introductory physics performance. AIP Conference Proceedings, 1064(1), 15–18. https://doi.org/10.1063/1.3021243
  • Doige, C. A., & Day, T. (2012). A typology of undergraduate textbook definitions of ‘heat’ across science disciplines. International Journal of Science Education, 34(5), 677–700. https://doi.org/10.1080/09500693.2011.644820
  • Duit, R., Niedderer, H., & Schecker, H. (2007). Teaching physics. In S. K. Abell, & N. G. Lederman (Eds.), Handbook on research on science education (pp. 599–629). Routledge.
  • Duprez, C., & Méheut, M. (2003). About some of the difficulties in learning thermodynamics at the university level. In D. Psillos, P. Kariotoglou, V. Tselfes, E. Hatzikraniotis, G. Fassoulopoulos, & M. Kallery (Eds.), Science education research in the knowledge-based society (pp. 99–106). Springer.
  • Else-Quest, N. M., Mineo, C. C., & Higgins, A. (2013). Math and science attitudes and achievement at the intersection of gender and ethnicity. Psychology of Women Quarterly, 37(3), 293–309. https://doi.org/10.1177%2F0361684313480694
  • Eryilmaz, A. (2002). Effects of conceptual assignments and conceptual change discussions on students’ misconceptions and achievement regarding force and motion. Journal of Research in Science Teaching, 39(10), 1001–1015. https://doi.org/10.1002/tea.10054
  • Faremi, Y. A. (2016). Reliability coefficient of multiple–choice and short answer objective test items in basic technology: comparative approach. Journal of Educational Policy and Entrepreneurial Research (JEPER), 3(3), 59–69.
  • Fasasi, R. A. (2017). Effects of ethnoscience instruction, school location, and parental educational status on learners’ attitude towards science. International Journal of Science Education, 39(5), 548–564. https://doi.org/10.1080/09500693.2017.1296599
  • Feuerstein, A. (2000). School characteristics and parent involvement: Influences on participation in children's schools. The Journal of Educational Research, 94(1), 29–40. https://doi.org/10.1080/00220670009598740
  • Field, A. (2018). Discovering statistics using IBM SPSS statistics (5th ed.). SAGE Publications.
  • Garnett, P. J., Garnett, P., & Hackling, M. W. (1995). Students’ alternative conceptions in chemistry: A review of research and implications for teaching and learning. Studies in Science Education, 25(1), 69–96. https://doi.org/10.1080/03057269508560050
  • Georgiou, H., & Sharma, M. D. (2010). A report on a preliminary diagnostic for identifying thermal physics conceptions of tertiary students. International Journal of Innovation in Science and Mathematics Education (Formerly CAL-Laborate International), 18(2), 32–51. https://ro.uow.edu.au/cgi/viewcontent.cgi?article=3332&context=sspapers
  • Georgiou, H., & Sharma, M. D. (2012). University students’ understanding of thermal physics in everyday contexts. International Journal of Science and Mathematics Education, 10(5), 1119–1142. https://doi.org/10.1007/s10763-011-9320-1
  • Georgiou, H., Sharma, M., O’Byrne, J., Sefton, I., & McInnes, B. (2009). University students’ conceptions about familiar thermodynamic process and the implications for instruction. Proceedings of the motivating science undergraduates: Ideas and intervention (pp. 51–57). https://openjournals.library.sydney.edu.au/index.php/IISME/article/download/6203/6851
  • Giannikopoulos, G., Papastratou, P., Skoura, V., Stathopoulou, X., Taflanidou, M., Tsiflika, D., & Psycharis, G. (2010). PISA 2006 results report for Greece. Institute of Educational Policy.
  • Gilbert, J., Osborne, R., & Fensham, P. (1982). Children’s science and its consequences for teaching. Science Education, 66(4), 623–633. https://doi.org/10.1002/sce.3730660412
  • Glen, S. (2020, July 26). Kuder-Richardson 20 (KR-20) & 21 (KR-21). Statistics how to: Statistics for the rest of us! https://www.statisticshowto.com/kuder-richardson/
  • Glynn, S. M., & Muth, K. D. (1994). Reading and writing to learn science: Achieving scientific literacy. Journal of Research in Science Teaching, 31(9), 1057–1073. https://doi.org/10.1002/tea.3660310915
  • Gönen, S., & Kocakaya, S. (2010). A cross-age study on the understanding of heat and temperature. Eurasian Journal of Physics and Chemistry Education, 2(1), 1–15. https://doi.org/116
  • Hadžibegović, Z., & Sulejmanović, S. (2014). Fundamental thermal concepts understanding: The first-year chemistry student questionnaire results. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 42, 21–30. http://www.pmf.unsa.ba/hemija/glasnik/files/Issue%2042/42-5-Hadzibegovic.pdf
  • Hambleton, R. K. (2001). The next generation of the ITC test translation and adaptation guidelines. European Journal of Psychological Assessment, 17(3), 164–172. doi:10.1027//1015-5759.17.3.164
  • Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response Theory. Sage Press.
  • Handoyo, E. (2007). The interesting of learning thermodynamics through daily life. Teaching and Learning Center (TLC), Proceedings of Maranatha teaching and learning international conference: Teaching and learning in higher education for developing countries (pp. 151–158). http://fportfolio.petra.ac.id/user_files/91-021/15_ekadewi.pdf
  • Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–127. https://doi.org/10.1207/s15326985ep4102_4
  • Jafarov, J. (2015). Factors affecting parental involvement in education: The analysis of literature. Khazar Journal of Humanities and Social Sciences, 18(4), 35–44. https://doi.org/10.5782/2223-2621.2015.18.4.35
  • Jarrett, O. S. (1999). Science interest and confidence among preservice elementary teachers. Journal of Elementary Science Education, 11(1), 49–59. https://doi.org/10.1007/BF03173790
  • Jonassen, D. H. (1991). Evaluating constructivist learning. Educational Technology, 31(9), 28–33. https://www.jstor.org/stable/44401696?seq=1
  • Jordan, C., Orozco, E., & Averett, A. (2001). Emerging issues in school, family, & community connections: Annual synthesis. Southwest Educational Development Lab. http://files.eric.ed.gov/fulltext/ED464411.pdf
  • Kácovský, P. (2015). Students’ alternative conceptions in thermodynamics. In Safrankova, & J. Pavlu (Eds.), WDS’14 proceedings of contributed papers - physics (Vol. 14, pp. 100–103). Matfyz press.
  • Kang, J., Keinonen, T., & Salonen, A. (2019). Role of interest and self-concept in predicting science aspirations: Gender study. Research in Science Education, 1–23. https://doi.org/10.1007/s11165-019-09905-w
  • Kauertz, A., Neumann, K., & Haertig, H. (2012). Competence in science education. In B. J. Fraser, K. J. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 711–721). Springer.
  • Klymkowsky, M. W. (2005). Can nonmajors courses lead to biological literacy? Do majors courses do any better? Cell Biology Education, 4(3), 196–198. https://doi.org/10.1187/cbe.05-04-0073
  • Krejcie, R. V., & Morgan, D. W. (1970). Determining sample size for research activities. Educational and Psychological Measurement, 30(3), 607–610. doi:10.1177/001316447003000308
  • Kruatong, T., Sung-ong, S., Singh, P., & Jones, A. (2006). Thai high school students’ understanding of heat and thermodynamics. Kasetsart University Journal, 27(2), 321–330. https://www.researchgate.net/profile/Alister_Jones/publication/266894192_Thai_High_School_Students'_Understanding_of_Heat_and_Thermodynamics/links/54e176fa0cf24d184b1118db/Thai-High-School-Students-Understanding-of-Heat-and-Thermodynamics.pdf
  • Kuder, G. F., & Richardson, M. W. (1937). The theory of the estimation of test reliability. Psychometrika, 2(3), 151–160. https://doi.org/10.1007/BF02288391
  • Lau, K. (2009). A critical examination of PISA’s assessment on scientific literacy. International Journal of Science and Mathematics Education, 7(6), 1061–1088. https://doi.org/10.1007/s10763-009-9154-2
  • Lelliott, A. (2014). Scientific literacy and the South African school curriculum. African Journal of Research in Mathematics, Science and Technology Education, 18(3), 311–323. https://doi.org/10.1080/10288457.2014.967935
  • Li, I., & Dockery, M. (2014). Socio-economic status of schools and university academic performance: Implications for Australia's higher education expansion. National Centre for Student Equity in Higher Education. Curtin University.
  • Liu, X. (2009). Beyond science literacy: Science and the public. International Journal of Environmental & Science Education, 4(3), 301–311. https://eric.ed.gov/?id=EJ884399
  • Liu, Q., & Nesbit, J. C. (2018). Conceptual change with refutational maps. International Journal of Science Education, 40(16), 1980–1998. https://doi.org/10.1080/09500693.2018.1515513
  • Löffler, P., & Kauertz, A. (2014). Applying physics models in context-based tasks in physics education. In C. Constantinou, N. Papadouris, & A. Hadjigeorgiou (Eds.), E-Book proceedings of the ESERA 2013 conference (pp. 171–179). European Science Education Research Association. Strand 10.
  • Löffler, P., Pozas, M., & Kauertz, A. (2018). How do students coordinate context-based information and elements of their own knowledge? An analysis of students’ context-based problem-solving in thermodynamics. International Journal of Science Education, 40(16), 1935–1956. https://www.tandfonline.com/doi/citedby/10.1080/09500693.2018.1514673?scroll=top&needAccess=true https://doi.org/10.1080/09500693.2018.1514673
  • Lord, F. M. (1980). Applications of item response theory to practical testing problems. Lawrence Erlbaum Associates, Inc.
  • Luera, G. L., Otto, C., & Zitzewitz, P. W. (2005). A conceptual change approach to teaching energy and thermodynamics to pre-service elementary teachers. Journal of Physics Teacher Education Online, 2(4), 3–8. http://www2.phy.ilstu.edu/~cjwennin/jpteo/issues/jpteo2(4)may05.pdf
  • Luera, G. L., Otto, C., & Zitzewitz, P. W. (2006). Use of the thermal concept evaluation to focus instruction. The Physics Teacher, 44(3), 162–166. https://doi.org/10.1119/1.2173324
  • Madu, B., & Orji, E. (2015). Effects of cognitive conflict instructional strategy on students’ conceptual change in temperature and heat. Sage Open, 5(3), 1–9. https://doi.org/10.1177%2F2158244015594662
  • Maries, A., Karim, N. I., & Singh, S. (2019). Does stereotype threat affect female students’ performance in introductory physics? In AIP conference proceedings 2109, 120001. https://doi.org/10.1063/1.5110145
  • Martin, M. O., Mullis, I. V. S., Foy, P., & Hooper, M. (2016). TIMSS 2015 international results in science. Retrieved from Boston College, TIMSS & PIRLS International Study Center Website http://timssandpirls.bc.edu/timss2015/international-results/
  • Mazur, E. (1997). Understanding or memorization: Are we teaching the right thing? In J. Wilson (Ed.), Conference on the introductory physics course on the occasion of the retirement of Robert Reznick (pp. 114–118). Wiley.
  • McLure, F., Won, M., & Treagust, D. F. (2020). A sustained multidimensional conceptual change intervention in grade 9 and 10 science classes. International Journal of Science Education, 42(5), 703–721. https://doi.org/10.1080/09500693.2020.1725174
  • Meltzer, D. E. (2004). Investigation of students’ reasoning regarding heat, work, and the first law of thermodynamics in an introductory calculus-based general physics course. American Journal of Physics, 72(11), 1432–1446. https://doi.org/10.1119/1.1789161
  • Meltzer, D. E., & Thornton, R. K. (2012). Resource letter ALIP-1: Active-learning instruction in physics. American Journal of Physics, 80(6), 478–496. https://doi.org/10.1119/1.3678299
  • Miyake, A., Kost-Smith, L. E., Finkelstein, N. D., Pollock, S. J., Cohen, G. L., & Ito, T. A. (2010). Reducing the gender achievement gap in college science: A classroom study of values affirmation. Science, 330(6008), 1234–1237. https://doi.org/10.1126/science.1195996
  • Organisation for Economic Co-operation and Development. (2016a). PISA 2015 results (volume I): Excellence and equity in education, PISA. OECD Publishing.
  • Organisation for Economic Co-operation and Development. (2016b). PISA 2015 assessment and analytical framework: Science, reading, mathematic and financial literacy. PISA. OECD Publishing.
  • Osborne, R. J., & Cosgrove, M. M. (1983). Children’s conceptions of the changes of state of water. Journal of Research in Science Teaching, 20(9), 825–838. https://doi.org/10.1002/tea.3660200905
  • Osborne, R., & Freyberg, P. (1985). Learning in science: The implications for children’s science. Heinemann.
  • Paik, S. H., Cho, B. K., & Go, Y. M. (2007). Korean 4 to 11-year-old student conceptions of heat and temperature. Journal of Research in Science Teaching, 44(2), 284–302. https://doi.org/10.1002/tea.20174
  • Palmer, D. (2001). Students’ alternative conceptions and scientifically acceptable conceptions about gravity. International Journal of Science Education, 23(7), 691–706. https://doi.org/10.1080/09500690010006527
  • Pell, A., & Jarvis, T. (2003). Developing attitude to science education scales for use with primary teachers. International Journal of Science Education, 25(10), 1273–1295. https://doi.org/10.1080/0950069022000017289
  • Pfundt, H., & Duit, R. (1994). Bibliography: Students’ alternative frameworks and science education (4th ed.). Institute for Science Education.
  • Reilly, D. (2012). Gender, culture, and sex-typed cognitive abilities. PloS one, 7(7), Article e39904, 1–16. https://doi.org/10.1371/journal.pone.0039904
  • Reilly, D., Neumann, D. L., & Andrews, G. (2019). Investigating gender differences in mathematics and science: Results from the 2011 trends in mathematics and science survey. Research in Science Education, 49(1), 25–50. https://doi.org/10.1007/s11165-017-9630-6
  • Rizopoulos, D. (2006). Ltm: An R package for latent variable modeling and item response theory analyses. Journal of Statistical Software, 17(5), 1–25. https://doi.org/10.18637/jss.v017.i05
  • Robbins, S. B., Lauver, K., Le, H., Davis, D., Langley, R., & Carlstrom, A. (2004). Do psychosocial and study skill factors predict college outcomes? A meta analysis. Psychological Bulletin, 130(2), 261–288. doi:10.1037/0033-2909.130.2.261
  • Roberts, D. A. (2007). Scientific literacy/science literacy. In S. K. Abell, & N. G. Lederman (Eds.), Handbook of research on science education (pp. 729–780). Lawrence Erlbaum Associates.
  • Roth, W. M. (2007). Toward a dialectical notion and praxis of scientific literacy. Journal of Curriculum Studies, 39(4), 377–398. https://doi.org/10.1080/00220270601032025
  • Roth, K. J., Druker, S. L., Garnier, H. E., Lemmens, M., Chen, C., Kawanaka, T., Rasmussen, D., Trubacova, S., Warvi, D., Okamato, Y., Gonzales, P., Stigler, L., & Gallimore, R. (2006). Teaching science in five countries: Results from the TIMSS 1999 video study. Department of Education National Center for Education Statistics. http://nces.ed.gov/pubs2006/2006011.pdf
  • Şahin, A., & Anil, D. (2017). The effects of test length and sample size on item parameters in item response theory. Educational Sciences: Theory & Practice, 17(1), 321–335. https://doi.org/10.12738/estp.2017.1.0270
  • Sanger, M. J., & Greenbowe, T. J. (1997). Common student misconceptions in electrochemistry: Galvanic, electrolytic, and concentration cells. Journal of Research in Science Teaching, 34(4), 377–398. https://doi.org/10.1002/(SICI)1098-2736(199704)34:4%3C377::AID-TEA7%3E3.0.CO;2-O
  • Sargioti, A., & Emvalotis, A. (2020). Attitudes towards Science and the impact of epistemic beliefs on pre-service primary teachers' scientific literacy. Educational Journal of the University of Patras UNESCO Chair, 7, 174–189. https://doi.org/10.26220/une.3239
  • Schnittka, C., & Bell, R. (2011). Engineering design and conceptual change in science: Addressing thermal energy and heat transfer in eighth grade. International Journal of Science Education, 33(13), 1861–1887. https://doi.org/10.1080/09500693.2010.529177
  • Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J. (2006). Reporting structural equation modeling and confirmatory factor analysis results: A review. The Journal of Educational Research, 99(6), 323–338. https://doi.org/10.3200/JOER.99.6.323-338
  • Senocak, E. (2009). Prospective primary school teachers’ perceptions on boiling and freezing. Australian Journal of Teacher Education, 34(4), 27–38. https://doi.org/10.14221/ajte.2009v34n4.3
  • Siorenta, A., & Jimoyiannis, A. (2008). Physics instruction in secondary schools: An investigation of teachers’ beliefs towards physics laboratory and ICT. Research in Science & Technological Education, 26(2), 185–202. https://doi.org/10.1080/02635140802037328
  • Slater, E. V., Morris, J. E., & McKinnon, D. (2018). Astronomy alternative conceptions in preadolescent students in Western Australia. International Journal of Science Education, 40(17), 2158–2180. https://doi.org/10.1080/09500693.2018.1522014
  • Sofianopoulou, X., Emvalotis, A., Pitsia, P., & Karakolidis, A. (2017). PISA 2015 results report for the students’ achievements evaluation in Greece. Institute of Educational Policy.
  • Stavy, R., Tsamir, P., & Tirosh, D. (2002). Intuitive rules: The case of “more A - more B”. In M. Limón, & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 217–231). Springer. https://doi.org/10.1007/0-306-47637-1_12
  • Sun, L., Bradley, K. D., & Akers, K. (2012). A multilevel modelling approach to investigating factors impacting science achievement for secondary school students: PISA Hong Kong sample. International Journal of Science Education, 34(14), 2107–2125. https://doi.org/10.1080/09500693.2012.708063
  • Thorpe, G. L., & Favia, A. (2012). Data analysis using item response theory methodology: An introduction to selected programs and applications. Psychology Faculty Scholarship, 20, 1–33. https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=1019&context=psy_facpub
  • Tsai, C. C. (2004). Conceptions of learning science among high school students in Taiwan: A phenomenographic analysis. International Journal of Science Education, 26(14), 1733–1750. https://doi.org/10.1080/0950069042000230776
  • Tsai, C. Y., Li, Y. Y., & Cheng, Y. Y. (2017). The relationships among adult affective factors, engagement in science, and scientific competencies. Adult Education Quarterly, 67(1), 30–47. https://doi.org/10.1177%2F0741713616673148
  • Tsakloglou, P., & Cholezas, I. (2005). Education and inequality in Greece (IZA Discussion Paper Series, No. 1582). IZA (Institute for the Study of Labour).
  • Vosniadou, S., & Ioannides, C. (1998). From conceptual development to science education: A psychological point of view. International Journal of Science Education, 20(10), 1213–1230. https://doi.org/10.1080/0950069980201004
  • Willems, J., Coertjens, L., Tambuyzer, B., & Donche, V. (2018). Identifying science students at risk in the first year of higher education: The incremental value of non-cognitive variables in predicting early academic achievement. European Journal of Psychology of Education, 34(4), 847–872. https://doi.org/10.1007/s10212-018-0399-4
  • Woodcock, R. W., & Muņoz-Sandoval, A. F. (1993). An IRT approach to cross-language test equating and interpretation. European Journal of Psychological Assessment, 9(3), 233–241. https://psycnet.apa.org/record/1995-15970-001
  • Yeo, S., & Zadnik, M. (2001). Introductory thermal concept evaluation: Assessing students’ understanding. The Physics Teacher, 39(8), 496–504. https://doi.org/10.1119/1.1424603

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.