852
Views
4
CrossRef citations to date
0
Altmetric
Articles

Probing Greek secondary school students’ awareness of green chemistry principles infused in context-based projects related to socio-scientific issues

ORCID Icon, ORCID Icon & ORCID Icon
Pages 298-313 | Received 17 Aug 2020, Accepted 17 Dec 2020, Published online: 11 Jan 2021

References

  • Altheide, L. D. (2008). Ethnographic content analysis. In L. M. Given (Ed.), The Sage Encyclopedia of Qualitative research methods (pp. 287–288). SAGE.
  • Anastas, P. T. (2009). The transformative innovations needed by green chemistry for sustainability. ChemSusChem: Chemistry & Sustainability Energy & Materials, 2(5), 391–392. DOI: https://doi.org/10.1002/cssc.200900041
  • Anastas, P. T., & Beach, E. S. (2009). Changing the course of chemistry. In P. Anastas Paul, I. Levy, & K. Parent (Eds.), Green chemistry education: Changing the Course of chemistry (pp. 1–18). American Chemical Society.
  • Anastas, P., & Eghbali, N. (2010). Green chemistry: Principles and practice. Chemical Society Reviews, 39(1), 301–312. doi:10.1039/B918763B
  • Anastas, P., & Warner, J. (1998). Green chemistry: Theory and practice. Oxford University Press.
  • Anastas, P. T., Williamson, T. C., Hjeresen, D., & Breen, J. J. (1999). Promoting green chemistry initiatives. Environmental Science & Technology, 33(5), 116–119. doi:10.1021/es992685c
  • Antonoglou, L., Salta, K., & Koulougliotis, D. (2019). Integration of web-based tools in science teaching in secondary education in Greece In AIP Conference Proceedings (Vol. 2075, No. 1, p. 200002). AIP Publishing LLC.
  • Boeije, H. (2002). A purposeful approach to the constant comparative method in the analysis of qualitative interviews. Quality and Quantity, 36(4), 391–409. doi:10.1023/A:1020909529486
  • Burmeister, M., Rauch, F., & Eilks, I. (2012). Education for sustainable development (ESD) and chemistry education. Chemistry Education Research and Practice, 13(2), 59–68. doi:10.1039/C1RP90060A
  • Denzin, N. K., & Lincoln, Y. S. (2000). Handbook of Qualitative research (2nd ed). Sage.
  • Eijkelhof, H. (2015). Context-Led science projects. In R. Gunstone (Ed.), Encyclopedia of science education (pp. 232–235). Springer.
  • Eilks, I., & Rauch, F. (2012). Sustainable development and green chemistry in chemistry education. Chemistry Education Research and Practice, 13(2), 57–58. doi:10.1039/C2RP90003C
  • Erduran, S. (2008). Methodological foundations in the study of argumentation in science classrooms. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education (pp. 47–69). Springer.
  • Gilbert, J. K. (2006). On the nature of ‘context’ in chemical education. International Journal of Science Education, 28(9), 957–976. doi:10.1080/09500690600702470
  • Haack, J. A., & Hutchison, J. E. (2016). Green chemistry education: 25 years of progress and 25 years ahead. ACS Sustainable Chemistry & Engineering, 4(11), 5889–5896. doi:10.1021/acssuschemeng.6b02069
  • Hofstein, A., & Kesner, M. (2006). Industrial chemistry and school chemistry: Making chemistry studies more relevant. International Journal of Science Education, 28(9), 1017–1039. doi:10.1080/09500690600702504
  • Jegstad, K. M., & Sinnes, A. T. (2015). Chemistry teaching for the future: A model for secondary chemistry education for sustainable development. International Journal of Science Education, 37(4), 655–683. doi:10.1080/09500693.2014.1003988
  • Kapassa, M., Abeliotis, K., & Scoullos, M. (2013). Knowledge, beliefs and attitudes of secondary school students on renewable feedstocks/biomass: The case of Greece. Environment. Development and Sustainability, 15(1), 101–116. doi:10.1007/s10668-012-9377-1
  • Karpudewan, M., Ismail, Z., & Mohamed, N. (2009). The integration of green chemistry experiments with sustainable development concepts in pre-service teachers’ curriculum: Experiences from Malaysia. International Journal of Sustainability in Higher Education, 10(2), 118–135. doi:10.1108/14676370910945936
  • Karpudewan, M., Ismail, Z., & Roth, W. M. (2012). Promoting pro-environmental attitudes and reported behaviors of Malaysian pre-service teachers using green chemistry experiments. Environmental Education Research, 18(3), 375–389. doi:10.1080/13504622.2011.622841
  • Lasker, G. A., Mellor, K. E., Mullins, M. L., Nesmith, S. M., & Simcox, N. J. (2017). Social and environmental justice in the chemistry classroom. Journal of Chemical Education, 94(8), 983–987. doi:10.1021/acs.jchemed.6b00968
  • Linn, M. C., Clark, D., & Slotta, J. D. (2003). WISE design for knowledge integration. Science Education, 87(4), 517–538. doi:10.1002/sce.10086
  • Linthorst, J. A. (2010). An overview: Origins and development of green chemistry. Foundations of Chemistry, 12(1), 55–68. doi:10.1007/s10698-009-9079-4
  • Mandler, D., Mamlok-Naaman, R., Blonder, R., Yayon, M., & Hofstein, A. (2012). High-school chemistry teaching through environmentally oriented curricula. Chemistry Education Research and Practice, 13(2), 80–92. doi:10.1039/C1RP90071D
  • Matus, K. J., Clark, W. C., Anastas, P. T., & Zimmerman, J. B. (2012). Barriers to the implementation of green chemistry in the United States. Environmental Science & Technology, 46(20), 10892–10899. doi:10.1021/es3021777
  • Miles, M. B., & Huberman, M. A. (1994). Qualitative data analysis: An expanded sourcebook. SAGE.
  • Norvig, P., Relman, D. A., Goldstein, D. B., Kammen, D. M., Weinberger, D. R., Aiello, L. C., Church, G., Hennessy, J. L., Sachs, J., & Burrows, A. (2010). 2020 Visions. Nature, 463(7), 26–32.
  • Poliakoff, M., & Licence, P. (2007). Sustainable technology: Green chemistry. Nature, 450(7171), 810. doi:10.1038/450810a
  • Sadler, T. D. (2004). Informal reasoning regarding socio-scientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513–536. doi:10.1002/tea.20009
  • Salta, K., Gekos, M., Petsimeri, I., & Koulougliotis, D. (2012). Discovering factors that influence the decision to pursue a chemistry-related career: A comparative analysis of the experiences of non scientist adults and chemistry teachers in Greece. Chemistry Education Research and Practice, 13(4), 437–446.
  • Satterfield, M. B., Kolb, C. E., Peoples, R., Adams, G. L., Schuster, D. S., Ramsey, H. C., Stechel, E., Wood-Black, F., Garant, R. J., & Abraham, M. A. (2009). Overcoming nontechnical barriers to the implementation of sustainable solutions in industry. Environmental Science & Technology, 43(12), 4221–4226. doi:10.1021/es802980j
  • Sjöström, J., Eilks, I., & Zuin, V. G. (2016). Towards eco-reflexive science education. Science & Education, 25(3-4), 321–341. doi:10.1007/s11191-016-9818-6
  • Sjöström, J., & Talanquer, V. (2014). Humanizing chemistry education: From simple contextualization to multifaceted problematization. Journal of Chemical Education, 91(8), 1125–1131. doi:10.1021/ed5000718
  • Stammes, H., Henze, I., Barendsen, E., & de Vries, M. (2020). Bringing design practices to chemistry classrooms: Studying teachers’ pedagogical ideas in the context of a professional learning community. International Journal of Science Education, 42(4), 526–546. doi:10.1080/09500693.2020.1717015
  • Tippins, D., & Britton, S. A. (2015). Ecojustice pedagogy. In R. Gunstone (Ed.), Encyclopedia of science education (pp. 358–362). Springer.
  • Trost, B. M. (1991). The atom economy-a search for synthetic efficiency. Science, 254(5037), 1471–1477. doi:10.1126/science.1962206
  • WISE. https://wise.berkeley.edu/ Accessed June 4 2020
  • Zeidler, D. (2015). Socio-scientific issues. In R. Gunstone (Ed.), Encyclopedia of science education (pp. 998–1003). Springer.
  • Zeidler, D. L., & Keefer, M. (2003). The role of moral reasoning and the status of socio-scientific issues in science education. In D. Zeidler (Ed.), The role of moral reasoning on socio-scientific issues and discourse in science education (pp. 7–38). Kluwer Academic.
  • Zuin, V. G., & Marques, C. A. (2015). Green chemistry education in Brazil: Contemporary tendencies and reflections at secondary school level. In V. Zuin & L. Mammino (Eds.), Worldwide Trends in green chemistry education (pp. 27–44). Royal Society of Chemistry.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.