373
Views
1
CrossRef citations to date
0
Altmetric
Articles

Assessing quantitative modelling practices, metamodelling, and capability confidence of biology undergraduate students

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 1685-1707 | Received 19 Jun 2020, Accepted 05 May 2021, Published online: 23 May 2021

References

  • AAAS. (2011). Vision and change in undergraduate biology education: A call to action.Washington, D.C. http://visionandchange.org/finalreport/
  • Acher, A., Arcà, M., & Sanmartí, N. (2007). Modeling as a teaching learning process for understanding materials: A case study in primary education. Science Education, 91(3), 398–418. https://doi.org/10.1002/sce.20196
  • Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43(4), 561–573. https://doi.org/10.1007/BF02293814
  • Bamberger, Y. M., & Davis, E. A. (2013). Middle-school science students’ scientific modelling performances across content areas and within a learning progression. International Journal of Science Education, 35(2), 213–238. https://doi.org/10.1080/09500693.2011.624133
  • Bond, T., & Fox, C. M. (2015). Applying the Rasch model: Fundamental measurement in the human sciences. Routledge.
  • Boone, W. J., Staver, J. R., & Yale, M. S. (2013). Rasch analysis in the human sciences. Springer.
  • Chaplin, S. (2007). A model of student success: Coaching students to develop critical thinking skills in introductory biology courses. International Journal for the Scholarship of Teaching and Learning, 1(2), Article 10. https://doi.org/10.20429/ijsotl.2007.010210
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Erlbaum.
  • Deane, T., Nomme, K., Jeffery, E., Pollock, C., & Birol, G. (2016). Development of the statistical reasoning in biology concept inventory (SRBCI). CBE-Life Sciences Education, 15(1), ar5. https://doi.org/10.1187/cbe.15-06-0131
  • Diaz Eaton, C., Callender, H. L., Dahlquist, K. D., LaMar, M. D., Ledder, G., & Schugart, R. C. (2019). A “rule of five” framework for models and modeling to unify mathematicians and biologists and improve student learning. Problems, Resources, and Issues in Undergraduate Mathematical Sciences (PRIMUS), 29(8), 799–829. https://doi.org/10.1080/10511970.2018.1489318
  • Diaz Eaton, C., LaMar, M. D., & McCarthy, M. (2020). 21st century reform efforts in undergraduate quantitative biology education. Letters in Biomathematics, 7(1), 55–66.
  • Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (2007). Taking science to school: Learning and teaching science in grades K-8. National Academies Press. http://www.nap.edu/catalog/11625.html
  • Engelhard, G. (2013). Invariant measurement: Using Rasch models in the social, behavioral, and health sciences. Routledge. https://books.google.com/books?id=NlqtMAEACAAJ
  • Flanagan, K. M., & Einarson, J. (2017). Gender, math confidence, and grit: Relationships with quantitative skills and performance in an undergraduate biology course. CBE—Life Sciences Education, 16(3), ar47. https://doi.org/10.1187/cbe.16-08-0253
  • Fortus, D., Shwartz, Y., & Rosenfeld, S. (2016). High school students’ meta-modeling knowledge. Research in Science Education, 46(6), 787–810. https://doi.org/10.1007/s11165-015-9480-z
  • Fretz, E. B., Wu, H.-K., Zhang, B., Davis, E. A., Krajcik, J. S., & Soloway, E. (2002). An investigation of software scaffolds supporting modeling practices. Research in Science Education, 32(4), 567–589. https://doi.org/10.1023/A:1022400817926
  • Garfunkel, S., & Montgomery, M. (2016). GAIMME report: Guidelines for assessment & instruction in mathematical modeling education. Consortium for Mathematics and Its Applications. http://www.siam.org/reports/gaimme.php
  • Gilbert, S. W. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 73–79. https://doi.org/10.1002/tea.3660280107
  • Gobert, J. D., & Buckley, B. C. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891–894. https://doi.org/10.1080/095006900416839
  • Goldstein, J., & Flynn, D. F. B. (2011). Integrating active learning & quantitative skills into undergraduate Introductory biology curricula. The American Biology Teacher, 73(8), 454–461. https://doi.org/10.1525/abt.2011.73.8.6
  • Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011–1026. https://doi.org/10.1080/095006900416884
  • Hester, S., Nadler, M., Katcher, J., Elfring, L., Dykstra, E., Rezende, L., & Bolger, M. S. (2018). Authentic inquiry through modeling in biology (AIM-Bio): An introductory laboratory curriculum that increases undergraduates’ scientific agency and skills. CBE - Life Sciences Education, 17(4), ar63. https://doi.org/10.1187/cbe.18-06-0090
  • Hoffman, K., Leupen, S., Dowell, K., Kephart, K., & Leips, J. (2016). Development and assessment of modules to integrate quantitative skills in introductory biology courses. CBE-Life Sciences Education, 15(2), ar14. https://doi.org/10.1187/cbe.15-09-0186
  • Association of American Medical Colleges & Howard Hughes Medical Institute. (2009). Scientific foundations for future physicians: Report of the AAMC-HHMI committee. Washington, D.C. and Chevy Chase.
  • Hughes-Hallett, D. (2003). The role of mathematics courses in the development of quantitative literacy. In B. L. Madison & L. A. Steen (Eds.), Quantitative literacy: Why numeracy matters for schools and colleges (pp. 91–98). National Council on Education and the Disciplines.
  • IBM Corp. (2017). IBM SPSS statistics for windows (Version 25) [Computer software]. IBM Corp.
  • JASP Team. (2019). JASP (0.11) [Computer software].
  • Johnson, Y., & Kaplan, J. (2014). Assessing the quantitative literacy of students at a large public research university. http://www.statlit.org/pdf/2008JohnsonKaplanCRUME.pdf
  • Jonassen, D., Strobel, J., & Gottdenker, J. (2005). Model building for conceptual change. Interactive Learning Environment, 13(1–2), 15–37. https://doi.org/10.1080/10494820500173292
  • Kennedy, E. J., Lawton, L., & Plumlee, E. L. (2002). Blissful ignorance: The problem of unrecognized incompetence and academic performance. Journal of Marketing Education, 24(3), 243–252. https://doi.org/10.1177/0273475302238047
  • King, G. P., Bergan-Roller, H., Galt, N., Helikar, T., & Dauer, J. (2019). Modelling activities integrating construction and simulation supported explanatory and evaluative reasoning. International Journal of Science Education, 41(13), 1764–1786. https://doi.org/10.1080/09500693.2019.1640914
  • Koponen, I. T. (2007). Models and modelling in physics education: A critical re-analysis of philosophical underpinnings and suggestions for revisions. Science & Education, 16(7), 751–773. https://doi.org/10.1007/s11191-006-9000-7
  • Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: How difficulties in recognizing one’s own incompetence lead to inflated self-assessments. Journal of Personality and Social Psychology, 77(6), 1121–1134. https://doi.org/10.1037/0022-3514.77.6.1121
  • Lehrer, R., & Schauble, L. (2006). Cultivating model-based reasoning in science education. In R. K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 371–388). Cambridge University Press. http://psycnet.apa.org/psycinfo/2006-07157-022
  • Lenhard, W., & Lenhard, A. (2016). Calculation of effect sizes. https://www.psychometrica.de/effect_size.html
  • Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., Endler, L., Chelliah, V., Li, L., He, E., Henry, A., Stefan, M. I., Snoep, J., Hucka, M., Le Novere, N., & Laibe, C. (2010). Biomodels database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Systems Biology, 4, 92.
  • Linacre, J. M. (2002). What do infit and outfit, mean square and standardized mean? Rasch Measurement Transactions, 16(2), 878.
  • Linacre, J. M. (2017). Winsteps (4.0.1) [Computer software]. Winsteps.com
  • Linacre, J. M., & Wright, B. D. (1989). The equivalence of Rasch PROX and Mantel-Haenszel. Transactions of Rasch Measurement SIG, 3-2, 1–3.
  • Louca, L., & Zacharia, Z. (2012). Modeling-based learning in science education: Cognitive, metacognitive, social, material and epistemological contributions. Educational Review, 64(4), 471–492. https://doi.org/10.1080/00131911.2011.628748
  • Louca, L., & Zacharia, Z. (2019). Toward an epistemology of modeling-based learning in early science education. In A. Upmeier zu Belzen, D. Krüger, & J. van Driel (Eds.), Towards a competence-based view on models and modeling in science education (pp. 237–256). Springer International Publishing. https://doi.org/10.1007/978-3-030-30255-9_14
  • Louca, L., Zacharia, Z., & Constantinou, C. P. (2011). In quest of productive modeling-based learning discourse in elementary school science. Journal of Research in Science Teaching, 48(8), 919–951. https://doi.org/10.1002/tea.20435
  • Mayes, R., Dauer, J. T., Rittschof, K. A., & Gallant, B. (2020). Quantitative modeling in biology for undergraduate students (QM BUGS) diagnostic assessment. UNL Data Repository. https://doi.org/10.32873/unl.dr.20201008
  • Mayes, R., Forrester, J., Christus, J., Peterson, F., Bonilla, R., & Yestness, N. (2014). Quantitative reasoning in environmental science: A learning progression. International Journal of Science Education, 36(4), 635–658. https://doi.org/10.1080/09500693.2013.819534
  • Mayes, R., Rittschof, K., Dauer, J., & Gallant, B. (2019). Quantitative modelling biology undergraduate assessment. Letters in Biomathematics, 6(1), 1–27. https://doi.org/10.1080/23737867.2019.1653234.
  • Mayes, R., Rittschof, K., Forrester, J., Christus, J., Watson, L., & Peterson, F. (2015). Quantitative reasoning in environmental science: Rasch measurement to support QR assessment. Numeracy, 8(2), Article 4. https://doi.org/10.5038/1936-4660.8.2.4
  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics.
  • National Research Council (NRC). (2003). Bio 2010: Transforming undergraduate education for future research biologists. National Academies Press.
  • NGSS Lead States. (2013). Next generation science standards: For states, by states. http://www.nextgenscience.org/lead-state-partners
  • Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109–1130. https://doi.org/10.1080/09500693.2010.502191
  • Papaevripidou, M., Constantinou, C. P., & Zacharia, Z. C. (2007). Modeling complex marine ecosystems: An investigation of two teaching approaches with fifth graders. Journal of Computer Assisted Learning, 23(2), 145–157. https://doi.org/10.1111/j.1365-2729.2006.00217.x
  • Papaevripidou, M., & Zacharia, Z. C. (2015). Examining how students’ knowledge of the subject domain affects their process of modeling in a computer programming environment. Journal of Computers in Education, 2(3), 251–282. https://doi.org/10.1007/s40692-015-0034-1
  • Penner, D. E. (2000). Explaining systems: Investigating middle school students’ understanding of emergent phenomena. Journal of Research in Science Teaching, 37(8), 784–806. https://doi.org/10.1002/1098-2736(200010)37:8<784::AID-TEA3>3.0.CO;2-E
  • Picone, C., Rhode, J., Hyatt, L., & Parshall, T. (2007). Assessing gains in undergraduate students’ abilities to analyze graphical data. Teaching Issues and Experiments in Ecology, 5(July), 1–54.
  • Pluta, W. J., Chinn, C. A., & Duncan, R. G. (2011). Learners’ epistemic criteria for good scientific models. Journal of Research in Science Teaching, 48(5), 486–511. https://doi.org/10.1002/tea.20415
  • Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (expanded 1980). University of Chicago Press.
  • Schuchardt, A. M., & Schunn, C. D. (2016). Modeling scientific processes with mathematics equations enhances student qualitative conceptual understanding and quantitative problem solving. Science Education, 100(2), 290–320. https://doi.org/10.1002/sce.21198
  • Schulz, E. M. (1990). DIF detection: Rasch versus Mantel-Haenszel. Rasch Measurement Transactions, 4(2), 107.
  • Schwarz, C., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654. https://doi.org/10.1002/tea.20311
  • Schwarz, C., & White, B. Y. (2005). Metamodeling knowledge: Developing students’ understanding of scientific modeling. Cognition and Instruction, 23(2), 165–205. https://doi.org/10.1207/s1532690xci2302_1
  • Seel, N. M. (2017). Model-based learning: A synthesis of theory and research. Educational Technology Research and Development, 65(4), 931–966. https://doi.org/10.1007/s11423-016-9507-9
  • Sensevy, G., Tiberghien, A., Santini, J., Laubé, S., & Griggs, P. (2008). An epistemological approach to modeling: Cases studies and implications for science teaching. Science Education, 92(3), 424–446. https://doi.org/10.1002/sce.20268
  • Sins, P. H. M., Savelsbergh, E. R., & van Joolingen, W. R. (2005). The difficult process of scientific modelling: An analysis of novices’ reasoning during computer-based modelling. International Journal of Science Education, 27(14), 1695–1721. https://doi.org/10.1080/09500690500206408
  • Speth, E. B., Momsen, J. L., Moyerbrailean, G. A., Ebert-May, D., Long, T. M., Wyse, S., & Linton, D. (2010). 1, 2, 3, 4: Infusing quantitative literacy into introductory biology. CBE-Life Sciences Education, 9(3), 323–332. https://doi.org/10.1187/cbe.10-03-0033
  • Stanhope, L., Ziegler, L., Haque, T., Le, L., Vinces, M., Davis, G. K., Zieffler, A., Brodfuehrer, P., Preest, M., Belitsky, J. M., Umbanhowar, C., Overvoorde, P. J., & Nehm, R. (2017). Development of a biological science quantitative reasoning exam (BioSQuaRE). CBE—Life Sciences Education, 16(4), ar66. https://doi.org/10.1187/cbe.16-10-0301
  • Steen, L. A. (2004). Achieving quantitative literacy: An urgent challenge for higher education. Mathematical Association of America.
  • Svoboda, J., & Passmore, C. (2013). The strategies of modeling in biology education. Science & Education, 22(1), 119–142. https://doi.org/10.1007/s11191-011-9425-5
  • Taylor, R. T., Bishop, P. R., Lenhart, S., Gross, L. J., & Sturner, K. (2020). Development of the BioCalculus Assessment (BCA). CBE—Life Sciences Education, 19(1), ar6. https://doi.org/10.1187/cbe.18-10-0216
  • Thompson, P. W. (2011). Quantitative reasoning and mathematical modeling. In L. L. Hatfield, S. Chamberlain, & S. Belbase (Eds.), New perspectives and directions for collaborative research in mathematics education. WISDOMe monographs (Vol. 1, pp. 33–57). University of Wyoming Press. http://www.uwyo.edu/wisdome/_files/documents/qr_reasoningmathmodeling_thompson.pdf
  • Tsui, C.-Y., & Treagust, D. F. (2013). Introduction to multiple representations: Their importance in biology and biological education. In D. Treagust, & C.-Y. Tsui (Eds.), Multiple representations in biological education (Vol. 7, pp. 3–18). Springer.
  • Wigfield, A., & Cambria, J. (2010). Students’ achievement values, goal orientations, and interest: Definitions, development, and relations to achievement outcomes. Developmental Review, 30(1), 1–35. https://doi.org/10.1016/j.dr.2009.12.001
  • Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941–967. https://doi.org/10.1002/sce.20259
  • Zwick, R., Thayer, D. T., & Lewis, C. (1999). An empirical Bayes approach to Mantel-Haenszel DIF analysis. Journal of Educational Measurement, 36(1), 1–28. https://doi.org/10.1111/j.1745-3984.1999.tb00543.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.