614
Views
2
CrossRef citations to date
0
Altmetric
Articles

A construct modelling approach to characterize chemistry students’ understanding of the nature of light 

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 873-895 | Received 29 Jul 2021, Accepted 15 Mar 2022, Published online: 26 Apr 2022

References

  • Åkerlind, G. S. (2012). Variation and commonality in phenomenographic research methods. Higher Education Research & Development, 31(1), 115–127. https://doi.org/10.1080/07294360.2011.642845
  • Alonzo, A. C., & Elby, A. (2019). Beyond empirical adequacy: Learning progressions as models and their value for teachers. Cognition and Instruction, 37(1), 1–37. https://doi.org/10.1080/07370008.2018.1539735
  • Alonzo, A. C., & Steedle, J. T. (2009). Developing and assessing a force and motion learning progression. Science Education, 93(3), 389–421. https://doi.org/10.1002/sce.20303
  • Ambrose, B. S., Heron, P. R. L., Vokos, S., & McDermott, L. C. (1999). Student understanding of light as an electromagnetic wave: Relating the formalism to physical phenomena. American Journal of Physics, 67(10), 891–898. https://doi.org/10.1119/1.19144
  • Ambrose, B. S., Shaffer, P. S., Steinberg, R. N., & McDermott, L. C. (1999). An investigation of student understanding of single-slit diffraction and double-slit interference. American Journal of Physics, 67(2), 146–155. https://doi.org/10.1119/1.19210
  • Ayene, M., Kriek, J., & Damtie, B. (2011). Wave-particle duality and uncertainty principle: Phenomenographic categories of description of tertiary physics students’ depictions. Physical Review Special Topics – Physics Education Research, 7(2), 1–13. https://doi.org/10.1103/PhysRevSTPER.7.020113
  • Bain, K., Rodriguez, J.-M. G., & Towns, M. H. (2019). Investigating student understanding of rate constants: When is a constant “constant”? Journal of Chemical Education, 96(8), 1571–1577. https://doi.org/10.1021/acs.jchemed.9b00005
  • Balabanoff, M. E., Al Fulaiti, H., Bhusal, S., Harrold, A., & Moon, A. C. (2020). An exploration of chemistry students’ conceptions of light and light-matter interactions in the context of the photoelectric effect. International Journal of Science Education, 42(6), 861–881. https://doi.org/10.1080/09500693.2020.1736358
  • Briggs, D. C., Alonzo, A. C., Schwab, C., & Wilson, M. (2006). Diagnostic assessment with ordered multiple-choice items. Educational Assessment, 11(1), 33–63. https://doi.org/10.1207/s15326977ea1101_2
  • Brown, N. J. S., & Wilson, M. (2011). A model of cognition: The missing cornerstone of assessment. Educational Psychology Review, 23(2), 221–234. https://doi.org/10.1007/s10648-011-9161-z
  • Brown, T. E., LeMay, H. E., Bursten, B. E., Murphy, C., Woodward, P., & Stoltzfus, M. E. (2014). Chemistry: The central science (13th ed.). Pearson.
  • Carr, L. D., & McKagan, S. B. (2009). Graduate quantum mechanics reform. American Journal of Physics, 77(4), 308–319. https://doi.org/10.1119/1.3079689
  • Cheong, Y. W., & Song, J. (2014). Different levels of the meaning of wave-particle duality and a suspensive perspective on the interpretation of quantum theory. Science & Education, 23(5), 1011–1030. https://doi.org/10.1007/s11191-013-9633-2
  • Cooper, M. M., & Klymkowsky, M. W. (2019). Chemistry, life, the universe & everything.
  • Cooper, M. M., & Stowe, R. L. (2018). Chemistry education research—From personal empiricism to evidence, theory, and informed practice. Chemical Reviews, 118(12), 6053–6087. https://doi.org/10.1021/acs.chemrev.8b00020
  • Dangur, V., Avargil, S., Peskin, U., & Dori, Y. J. (2014). Learning quantum chemistry via a visual-conceptual approach: Students’ bidirectional textual and visual understanding. Chemistry Education Research and Practice, 15(3), 297–310. https://doi.org/10.1039/C4RP00025K
  • Didiş, N. (2015). The analysis of analogy use in the teaching of introductory quantum theory. Chemistry Education Research and Practice, 16(2), 355–376. https://doi.org/10.1039/C5RP00011D
  • Didiş, N., Eryılmaz, A., & Erkoç, Ş. (2014). Investigating students’ mental models about the quantization of light, energy, and angular momentum. Physical Review Special Topics – Physics Education Research, 10(2), 1–28. https://doi.org/10.1103/PhysRevSTPER.10.020127
  • Duncan, R. G. (2009). Learning progressions: Aligning curriculum, instruction, and assessment. Journal of Research in Science Teaching, 46(6), 606–609. https://doi.org/10.1002/tea.20316
  • Forbes, M. D. E. (2015). What we talk about when we talk about light. ACS Central Science, 1(7), 354–363. https://doi.org/10.1021/acscentsci.5b00261
  • Galili, I., & Hazan, A. (2000). Learners’ knowledge in optics: Interpretation, structure and analysis. International Journal of Science Education, 22(1), 57–88. https://doi.org/10.1080/095006900290000
  • Garoutte, M., & Mahoney, A. (2015). Introductory chemistry: A guided inquiry. Wiley.
  • Hadenfeldt, J. C., Bernholt, S., Liu, X., Neumann, K., & Parchmann, I. (2013). Using ordered multiple-choice items to assess students’ understanding of the structure and composition of matter. Journal of Chemical Education, 90(12), 1602–1608. https://doi.org/10.1021/ed3006192
  • Henriksen, E. K., Angell, C., Vistnes, A. I., & Bungum, B. (2018). What is light? Nature of physics. In Science & education (Vol. 27, pp. 81–111). Science & Education.
  • Hobson, A. (2005). Electrons as field quanta: A better way to teach quantum physics in introductory general physics courses. American Journal of Physics, 73(7), 630–634. https://doi.org/10.1119/1.1900097
  • Holme, T., & Murphy, K. (2012). The ACS exams institute undergraduate chemistry anchoring concepts content map I: General chemistry. Journal of Chemical Education, 89(6), 721–723. https://doi.org/10.1021/ed300050q
  • Holme, T. A., Reed, J. J., Raker, J. R., & Murphy, K. L. (2018). The ACS exams institute undergraduate chemistry anchoring concepts content map IV: Physical chemistry. Journal of Chemical Education, 95(2), 238–241. https://doi.org/10.1021/acs.jchemed.7b00531
  • Ivanjek, L., Shaffer, P. S., McDermott, L. C., Planinic, M., & Veza, D. (2015). Research as a guide for curriculum development: An example from introductory spectroscopy. II. Addressing student difficulties with atomic emission spectra. American Journal of Physics, 83(2), 171–178. https://doi.org/10.1119/1.4902222
  • Jespersen, N. D., Brady, J. E., & Hyslop, A. (2014). Chemistry: The molecular nature of matter. https://books.google.com/books?id=MC9cngEACAAJ
  • Körhasan, N. D., & Miller, K. (2020). Students’ mental models of wave–particle duality. Canadian Journal of Physics, 98(3), 266–273. https://doi.org/10.1139/cjp-2019-0019
  • Körhasan, N. D., & Wang, L. (2016). Students’ mental models of atomic spectra. Chemistry Education Research and Practice, 17(4), 743–755. https://doi.org/10.1039/C6RP00051G
  • Krijtenburg-Lewerissa, K., Pol, H. J., Brinkman, A., & van Joolingen, W. R. (2019). Key topics for quantum mechanics at secondary schools: A Delphi study into expert opinions. International Journal of Science Education, 41(3), 349–366. https://doi.org/10.1080/09500693.2018.1550273
  • Lazenby, K., Balabanoff, M. E., Becker, N. M., Moon, A., & Barbera, J. (2021). From ideas to items: A primer on the development of ordered multiple-choice items for investigating the progression of learning in higher education STEM. Journal of Chemical Education, 98(3), 714–729. https://doi.org/10.1021/acs.jchemed.0c01121
  • Mannila, K., Koponen, I. T., & Niskanen, J. A. (2002). Building a picture of students’ conceptions of wave- and particle-like properties of quantum entities. European Journal of Physics, 23(1), 45–53. https://doi.org/10.1088/0143-0807/23/1/307
  • Marton, F. (1981). Phenomenography – Describing conceptions of the world around us. Instructional Science, 10(10), 177–200. https://doi.org/10.1007/BF00132516
  • Marton, F. (1986). Phenomenography: A research approach to investigating different understandings of reality. Journal of Thought, 21(3), 28–49. https://doi.org/10.4324/9780203645994-17
  • McGill, T. L., Williams, L. C., Mulford, D. R., Blakey, S. B., Harris, R. J., Kindt, J. T., Lynn, D. G., Marsteller, P. A., McDonald, F. E., & Powell, N. L. (2019). Chemistry unbound: Designing a new four-year undergraduate curriculum. Journal of Chemical Education, 96(1), 35–46. https://doi.org/10.1021/acs.jchemed.8b00585
  • McKagan, S. B., Handley, W., Perkins, K. K., & Wieman, C. E. (2007). A research-based curriculum for teaching the photoelectric effect. American Journal of Physics, 77(1), 87–94. https://doi.org/10.1119/1.2978181
  • McKagan, S. B., Perkins, K. K., & Wieman, C. E. (2010). Design and validation of the quantum mechanics conceptual survey. Physical Review Special Topics – Physics Education Research, 6(2), 1–17. https://doi.org/10.1103/PhysRevSTPER.6.020121
  • Müller, R., & Wiesner, H. (2002). Teaching quantum mechanics on an introductory level. American Journal of Physics, 70(3), 200–209. https://doi.org/10.1119/1.1435346
  • Murphy, K., Holme, T., Zenisky, A., Caruthers, H., & Knaus, K. (2012). Building the ACS exams anchoring concept content map for undergraduate chemistry. Journal of Chemical Education, 89(6), 715–720. https://doi.org/10.1021/ed300049w
  • Özcan, Ö. (2015). Investigating students’ mental models about the nature of light in different contexts. European Journal of Physics, 36(6), 065042. https://doi.org/10.1088/0143-0807/36/6/065042
  • Raker, J., Holme, T., & Murphy, K. (2013). The ACS exams institute undergraduate chemistry anchoring concepts content map II: Organic chemistry. Journal of Chemical Education, 90(11), 1443–1445. https://doi.org/10.1021/ed400175w
  • Reid, S., Rouinfar, A., Podolefsky, N., Adams, W., Tavares, D. L., Paul, A., … McCutchan, C. (n.d.). Wave interference. https://phet.colorado.edu/en/simulation/wave-interference
  • Savall-Alemany, F., Domènech-Blanco, J. L., Guisasola, J., & Martínez-Torregrosa, J. (2016). Identifying student and teacher difficulties in interpreting atomic spectra using a quantum model of emission and absorption of radiation. Physical Review Physics Education Research, 12(1), 1–16. https://doi.org/10.1103/PhysRevPhysEducRes.12.010132
  • Sevian, H., & Talanquer, V. (2014). Rethinking chemistry: A learning progression on chemical thinking. Chemistry Education Research and Practice, 15(1), 10–23. https://doi.org/10.1039/C3RP00111C
  • Shepherd, T., & Grushow, A. (2013). Quantum chemistry & spectroscopy: A guided inquiry. Wiley.
  • Singh, C., & Marshman, E. (2015). Review of student difficulties in upper-level quantum mechanics. Physical Review Special Topics – Physics Education Research, 11(2), 1–24. https://doi.org/10.1103/PhysRevSTPER.11.020117
  • Smith, C. L., Wiser, M., Anderson, C. W., & Krajcik, J. (2006). FOCUS ARTICLE: Implications of research on children’s learning for standards and assessment: A proposed learning progression for matter and the atomic-molecular theory. Measurement: Interdisciplinary Research & Perspective, 4(1–2), 1–98. https://doi.org/10.1080/15366367.2006.9678570
  • Stefani, C., & Tsaparlis, G. (2009). Students’ levels of explanations, models, and misconceptions in basic quantum chemistry: A phenomenographic study. Journal of Research in Science Teaching, 46(5), 520–536. https://doi.org/10.1002/tea.20279
  • Steinberg, R. N., Oberem, G. E., & McDermott, L. C. (1996). Development of a computer-based tutorial on the photoelectric effect. American Journal of Physics, 64(11), 1370–1379. https://doi.org/10.1119/1.18360
  • Taber, K. S. (2005). Learning quanta: Barriers to stimulating transitions in student understanding of orbital ideas. Science Education, 89(1), 94–116. https://doi.org/10.1002/sce.20038
  • Tro, N. J. (2010). Chemistry: A molecular approach. https://books.google.com/books?id=cBkfQwAACAAJ
  • Undergraduate Professional Education in Chemistry: ACS Guidelines and Evaluation Procedures for Bachelor’s Degree Programs. (2015). Washington, DC.
  • Wilson, M. (2005). Constructing measures: An item response modeling approach. Erlbaum Associates. pp. xix, 228–xix, 228.
  • Wilson, M. (2009). Measuring progressions: Assessment structures underlying a learning progression. Journal of Research in Science Teaching, 46(6), 716–730. https://doi.org/10.1002/tea.20318
  • Wosilait, K., Heron, P. R. L., Shaffer, P. S., & McDermott, L. C. (1999). Addressing student difficulties in applying a wave model to the interference and diffraction of light. American Journal of Physics, 67(S1), S5–S15. https://doi.org/10.1119/1.19083

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.