381
Views
0
CrossRef citations to date
0
Altmetric
Articles

Predictions and explanations about scientific situations in a high school context

ORCID Icon & ORCID Icon
Pages 144-163 | Received 29 Apr 2022, Accepted 25 Nov 2022, Published online: 07 Jan 2023

References

  • Alzina Bisquerra, R. (2004). Metodología de la investigación educativa. Editorial La Muralla.
  • Ametller, J., Caamaño, A., Caña, P., Couso, D., Gallástegui, J. R., Jiménez-Aleixandre, M. P., Justi, R., Pintó, R., de Pro, A., & Sanmartí, N. (2011). Didáctica de la física y la química. Editorial GRAÓ, de IRIF, S.L. Ministerio de Educación, Secretaría General Técnica.
  • Andersson, B. (1990). Pupils’ conceptions of matter and its transformations (age 12–16). Studies in Science Education, 18(1), 53–85. https://doi.org/10.1080/03057269008559981
  • Ayvacı, H. Ş. (2013). Investigating the effectiveness of predict-observe-explain strategy on teaching photoelectricity topic. Journal of Baltic Science Education, 12(5), 548–564. https://doi.org/10.33225/jbse/13.12.548
  • Berek, F. X., Sutopo, S., & Munzil, M. (2016). Enhancement of junior high school students’ concept comprehension in hydrostatic pressure and Archimedes law concepts by predict-observe-explain strategy. Jurnal Pendidikan IPA Indonesia, 5(2), 230–238. https://doi.org/10.15294/jpii.v5i2.6038
  • Braaten, M., & Windschitl, M. (2011). Working toward a stronger conceptualization of scientific explanation for science education. Science Education, 95(4), 639–669. https://doi.org/10.1002/sce.20449
  • Brown, D. E. (1993). Refocusing core intuitions: A concretizing role for analogy in conceptual change. Journal of Research in Science Teaching, 30(10), 1273–1290. https://doi.org/10.1002/tea.3660301009
  • Cañal, P. (2011). Competencia científica y competencia profesional en la enseñanza de las ciencias. In A. Caamaño, N. Sanmarti, P. Cañal, M. P. J. Aleixandre, D. Couso, R. Pintó, J. Ametller, J. R. Gallástegui, R. Justi, & A. De Pro (Eds.), Didáctica de la Física y la Química (pp. 35–52). Ministerio de Educación, Secretaría de Estado de Educación y Formación Profesional, Instituto de Formación del Profesorado, Investigación e Innovación Educativa.
  • Carrasquer, J., Ponz, A., Talavera, M., Carrasquer, B., & Álvarez, M. V. (2017). El uso didáctico del diablo cartesiano en la formación inicial de maestros. Didáctica de Las Ciencias Experimentales y Sociales, 0(31), 185–209. https://doi.org/10.7203/dces.31.5157
  • Cheng, M., & Brown, D. E. (2010). Conceptual resources in self-developed explanatory models: The importance of integrating conscious and intuitive knowledge. International Journal of Science Education, 32(17), 2367–2392. https://doi.org/10.1080/09500690903575755
  • Cupani, M. (2012). Análisis de ecuaciones estructurales: conceptos, etapas de desarrollo y un ejemplo de aplicación. Revista Tesis, 2(1), 186–199. http://hdl.handle.net/11086/22039
  • de Andrade, V., Freire, S., & Baptista, M. (2019). Constructing scientific explanations: A system of analysis for students’ explanations. Research in Science Education, 49(3), 787–807. https://doi.org/10.1007/s11165-017-9648-9
  • diSessa, A. A. (2004). Metarepresentation: Native competence and targets for instruction. Cognition and Instruction, 22(3), 293–331. https://doi.org/10.1207/s1532690xci2203_2
  • Driver, R., Guesne, E., & Tiberghien, A. (2000). Children’s ideas and the learning of science. In R. Driver, E. Guesne, & A. Tiberghien (Eds.), Children’s ideas in science (pp. 1–9). Open University Press.
  • George, D., & Mallery, P. (2003). SPSS for Windows step by step: A simple guide and reference 11.0 update. Allyn y Bacon.
  • Gilbert, J. K. (2008). Visualization: An emergent field of practice and enquiry in science education. In J. K. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and practice in science education (pp. 3–24). Springer.
  • Glauert, E. B. (2009). How young children understand electric circuits: Prediction, explanation and exploration. International Journal of Science Education, 31(8), 1025–1047. https://doi.org/10.1080/09500690802101950
  • Hadenfeldt, J. C., Liu, X., & Neumann, K. (2014). Framing students’ progression in understanding matter: A review of previous research. Studies in Science Education, 50(2), 181–208. https://doi.org/10.1080/03057267.2014.945829
  • Hadenfeldt, J. C., Neumann, K., Bernholt, S., Liu, X., & Parchmann, I. (2016). Students’ progression in understanding the matter concept. Journal of Research in Science Teaching, 53(5), 683–708. https://doi.org/10.1002/tea.21312
  • Harris, E. S. (2017). 365 Weird & wonderful science experiments: An experiment for every day of the year. Quarto Publishing Group USA Inc.
  • Hennessy, S., Wishart, J., Whitelock, D., Deaney, R., Brawn, R., Velle, L. l., McFarlane, A., Ruthven, K., & Winterbottom, M. (2007). Pedagogical approaches for technology-integrated science teaching. Computers & Education, 48(1), 137–152. https://doi.org/10.1016/j.compedu.2006.02.004
  • Herbert, D., & Ruchlis, H. (1983). Mr. Wizard’s 400 experiments in science. Book Lab.
  • Hong, J.-C., Hwang, M.-Y., Liu, M.-C., Ho, H.-Y., & Chen, Y.-L. (2014). Using a “prediction–observation–explanation” inquiry model to enhance student interest and intention to continue science learning predicted by their internet cognitive failure. Computers & Education, 72, 110–120. https://doi.org/10.1016/j.compedu.2013.10.004
  • Jaber, L. Z., & BouJaoude, S. (2012). A macro–micro–symbolic teaching to promote relational understanding of chemical reactions. International Journal of Science Education, 34(7), 973–998. https://doi.org/10.1080/09500693.2011.569959
  • Kala, N., Yaman, F., & Ayas, A. (2013). The effectiveness of predict-observe-explain technique in probing students understanding about acid-base chemistry: A case for the concepts of pH, pOH, and strength. International Journal of Science and Mathematics Education, 11(3), 555–574. https://doi.org/10.1007/s10763-012-9354-z
  • Karamustafaoglu, S., & Mamlok-Naaman, R. (2015). Understanding electrochemistry concepts using the predict-observe-explain strategy. EURASIA Journal of Mathematics, Science & Technology Education, 11(5), 923–936. https://doi.org/10.12973/eurasia.2015.1364a
  • Karsli Baydere, F. (2021). Effects of a context-based approach with prediction–observation–explanation on conceptual understanding of the states of matter, heat and temperature. Chemistry Education Research and Practice, 22(3), 640–652. https://doi.org/10.1039/D0RP00348D
  • Kearney, M., Treagust, D., Yeo, S., & Zadnik, M. (2001). Student and teacher perceptions of the use of multimedia supported predict–observe–explain tasks to probe understanding. Research in Science Education, 31(4), 589–615. https://doi.org/10.1023/A:1013106209449
  • Kind, P., & Osborne, J. (2017). Styles of scientific reasoning: A cultural rationale for science education? Science Education, 101(1), 8–31. https://doi.org/10.1002/sce.21251
  • Kline, R. B. (2005). Principles and practice of structural equation modeling. Guilford Press.
  • Ladyman, J. (2002). Understanding philosophy of science. Routledge.
  • Latifah, S., Irwandani, I., Saregar, A., Diani, R., Fiani, O., Widayanti, W., & Deta, U. A. (2019). How the predict-observe-explain (POE) learning strategy remediates students’ misconception on temperature and heat materials? Journal of Physics: Conference Series, 1171, 12051. https://doi.org/10.1088/1742-6596/1171/1/012051
  • Liew, C. W., & Treagust, D. F.. (1998). The effectiveness of predict-observe-explain tasks in diagnosing students’ understanding of science and in identifying their levels of achievement. Annual Meeting of the American Educational Research Association (ED420715). ERIC. https://files.eric.ed.gov/fulltext/ED420715.pdf
  • Lu, S., Bi, H., & Liu, X. (2018). The effects of explanation-driven inquiry on students’ conceptual understanding of redox. International Journal of Science Education, 40(15), 1857–1873. https://doi.org/10.1080/09500693.2018.1513670
  • Molina, R. G. (2008). La taza que sobrevivió una caída libre. Revista Eureka Sobre Enseñanza y Divulgación de Las Ciencias, 5(1), 114–117.
  • Monaghan, J. M., & Clement, J. (1999). Use of a computer simulation to develop mental simulations for understanding relative motion concepts. International Journal of Science Education, 21(9), 921–944. https://doi.org/10.1080/095006999290237
  • Moreno, R., & Mayer, R. (2007). Interactive multimodal learning environments. Educational Psychology Review, 19(3), 309–326. https://doi.org/10.1007/s10648-007-9047-2
  • Nurhuda, L., & Masriyah, A. (2018). Effectiveness of cooperative learning instructional tools with predict-observe-explain strategy on the topic of cuboid and cube volume. Journal of Physics: Conference Series, 947(12052), 1–5. https://doi.org/10.1088/1742-6596/947/1/012052
  • OECD. (2016). PISA 2015 results (volume I): Excellence and equity in education, PISA. OECD. https://doi.org/10.1787/9789264266490-en
  • OECD. (2019a). Informe PISA 2018. Programa para la Evaluación Internacional de los Estudiantes. Informe español. Instituto nacional de evaluación educativa de España. https://www.educacionyfp.gob.es/inee/evaluaciones-internacionales/pisa/pisa-2018/pisa-2018-informes-es.html
  • OECD. (2019b). PISA 2018 assessment and analytical framework, PISA. OECD. https://doi.org/10.1787/b25efab8-en
  • Osorio, R., & Gómez García, A. (2004). Experimentos divertidos de química para jóvenes. Universidad de Antioquia.
  • Pritchard, A., & Woollard, J. (2010). Psychology for the classroom: Constructivism and social learning. Routledge.
  • Rutten, N., van der Veen, J. T., & van Joolingen, W. R. (2015). Inquiry-based whole-class teaching with computer simulations in physics. International Journal of Science Education, 37(8), 1225–1245. https://doi.org/10.1080/09500693.2015.1029033
  • Salmon, W. C. (1978). Why ask, ‘why?’? An inquiry concerning scientific explanation. Proceedings and Addresses of the American Philosophical Association, 51(6), 683–705. https://doi.org/10.2307/3129654
  • Sesto, V., & García-Rodeja, I. (2017). Estudio sobre la evolución de los modelos mentales de estudiantes de 4° de ESO cuando observan, reflexionan y discuten sobre la combustión. Revista Eureka, 14(3), 521–534. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2017.v14.i3.02
  • Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in Science Education, 48(6), 1273–1296. https://doi.org/10.1007/s11165-016-9602-2
  • Talanquer, V. (2010). Exploring dominant types of explanations built by general chemistry students. International Journal of Science Education, 32(18), 2393–2412. https://doi.org/10.1080/09500690903369662
  • Tao, P.-K., & Gunstone, R. F. (1999). Conceptual change in science through collaborative learning at the computer. International Journal of Science Education, 21(1), 39–57. https://doi.org/10.1080/095006999290822
  • Tippett, C. D. (2016). What recent research on diagrams suggests about learning with rather than learning from visual representations in science. International Journal of Science Education, 38(5), 725–746. https://doi.org/10.1080/09500693.2016.1158435
  • Treagust, D., & Harrison, A. (1999). The genesis of effective scientific explanations for the classroom. In J. Loughran (Ed.), Researching teaching: Methodologies and practices for understanding pedagogy (pp. 28–43). Falmer Press.
  • Treagust, D. F., Mthembu, Z., & Chandrasegaran, A. L. (2014). Evaluation of the predict-observe-explain instructional strategy to enhance students’ understanding of redox reactions. In I. Devetak & S. Glažar (Eds.), Learning with understanding in the chemistry classroom (pp. 265–286). Springer.
  • Tsui, C.-Y., & Treagust, D. F. (2013). Introduction to multiple representations: Their importance in biology and biological education. In D. F. Treagust & C.-Y. Tsui (Eds.), Multiple representations in biological education (pp. 3–18). Springer.
  • Van Vo, D., & Csapó, B. (2021). Development of scientific reasoning test measuring control of variables strategy in physics for high school students: Evidence of validity and latent predictors of item difficulty. International Journal of Science Education, 43(13), 2185–2205. https://doi.org/10.1080/09500693.2021.1957515
  • Velentzas, A., & Halkia, K. (2018). Scientific explanations in Greek upper secondary physics textbooks. International Journal of Science Education, 40(1), 90–108. https://doi.org/10.1080/09500693.2017.1401251
  • White, R., & Gunstone, R. (1992). Prediction, observation, explanation. In R. White & R. Gunstone (Eds.), Probing understanding (pp. 44–63). Routledge.
  • Yaman, F., & Ayas, A. (2015). Assessing changes in high school students’ conceptual understanding through concept maps before and after the computer-based predict–observe–explain (CB-POE) tasks on acid–base chemistry at the secondary level. Chemistry Education Research and Practice, 16(4), 843–855. https://doi.org/10.1039/C5RP00088B
  • Zacharia, Z. C. (2005). The impact of interactive computer simulations on the nature and quality of postgraduate science teachers’ explanations in physics. International Journal of Science Education, 27(14), 1741–1767. https://doi.org/10.1080/09500690500239664
  • Zuzovsky, R., & Tamir, P. (1999). Growth patterns in students’ ability to supply scientific explanations: Findings from the third international mathematics and science study in Israel. International Journal of Science Education, 21(10), 1101–1121. https://doi.org/10.1080/095006999290219

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.