1,197
Views
0
CrossRef citations to date
0
Altmetric
Articles

Students’ sensemaking of synthesis physics problems: an exploration of their eye fixations

ORCID Icon & ORCID Icon
Pages 734-753 | Received 14 Jun 2022, Accepted 28 Jan 2023, Published online: 19 Feb 2023

References

  • Altmann, G. T. M. (2004). Language mediated eye movement in the absence of a visual world: The “blank screen paradigm”. Cognition, 93(2), 79–87. https://doi.org/10.1016/j.cognition.2004.02.005
  • Andrá, C., Lindström, P., Arzarello, F., Holmqyist, K., Robutti, O., & Sabena, C. (2015). Reading mathematics representations: An eye-tracking study. International Journal of Science and Mathematics Education, 13(S2), 237–259. https://doi.org/10.1007/s10763-013-9484-y
  • Antonenko, P. D., Ogilvie, C. A., Niderhauser, D. S., Jackman, J., Kumsaikaew, P., Marathe, R. R., & Ryan, S. M. (2011). Understanding student pathways in context-rich problems. Education and Information Technologies, 16(4), 323–342. https://doi.org/10.1007/s10639-010-9132-x
  • Badeau, R., White, D. R., Ibrahim, B., Ding, L., & Heckler, A. F. (2017b). What works with worked examples: Extending self-explanation and analogical reasoning to synthesis problems. Physical Review Physics Education Research, 13(2), 0201121–02011227. https://doi.org/10.1103/PhysRevPhysEducRes.13.020112
  • Brigham, F. J., Zaimi, E., Matkins, J. J., Shields, J., McDonnough, J., & Jakubecy, J. (2001). The eyes may have it: Reconsidering eye-movement research and human cognition. In T. E. Scruggs, & M. A. Mastropieri (Eds.), Advances in learning and behavioral disabilities: Technological applications (pp. 39–59). Elsevier Science.
  • Carpenter, P. A., & Just, M. A. (1978). Eye fixations during mental rotation. In J. W. Senders, D. F. Fisher, & R. A. Monty (Eds.), Eye movements and the higher psychological functions (pp. 115–133). Erlbaum.
  • Chen, S. C., She, H. C., Chuang, M. H., Wu, J. Y., Tsai, J. L., & Jung, T. P. (2014). Eye movements predict students’ computer-based assessment performance of physics concepts in different presentation modalities. Computer Education, 74, 61–72. https://doi.org/10.1016/j.compedu.2013.12.012
  • Ding, L., Reay, N. W., Heckler, A., & Bao, L. (2010). Sustained effects of solving conceptually scaffolded synthesis problems. In C. Singh, M. Sabella, & S. Rebello (Eds.), AIP Conference Proceedings (Vol. 1289, pp. 133–136). AIP. https://doi.org/10.1063/1.3515179
  • Ding, L., Reay, N. W., Lee, A., & Bao, L. (2009). Using conceptual scaffolding to foster effective problem solving. In M. S. Sabella, C. Henderson, & C. Singh (Eds.), AIP Conference Proceedings (Vol. 1179, pp. 129–132). AIP. https://doi.org/10.1063/1.3266695
  • Ding, L., Reay, N., Lee, A., & Bao, L. (2011). Exploring the role of conceptual scaffolding in solving synthesis problems. Physical Review Physics Education Research, 7(2), 0201091–02010911. https://doi.org/10.1103/PhysRevSTPER.7.020109
  • Docktor, J. L., & Mestre, J. P. (2014). Synthesis of discipline-based education research in physics. Physical Review Physics Education Research, 10(2), 0201191–02011958. https://doi.org/10.1103/PhysRevSTPER.10.020119
  • Docktor, J. L., Strand, N. E., Mestre, J. P., & Ross, B. H. (2015). Conceptual problem solving in high school physics. Physical Review Physics Education Research, 11(2), 0201061–02010613. https://doi.org/10.1103/PhysRevSTPER.11.020106
  • Eivazi, S., & Bednarik, R. (2011). Predicting problem-solving behavior and performance levels from visual attention data. Proceedings of the 2nd workshop on eye gaze in intelligent human machine interaction, 9-16.
  • Epelboim, J., & Suppes, P. (2001). A model of eye movements and visual working memory during problem solving in geometry. Vision Research, 41(12), 1561–1574. https://doi.org/10.1016/S0042-6989(00)00256-X
  • Ferreira, F., Apel, J., & Henderson, J. M. (2008). Taking a new look at looking at nothing. Trends in Cognitive Science, 12(11), 405–410. https://doi.org/10.1016/j.tics.2008.07.007
  • Grant, E. R., & Spivey, M. J. (2003). Eye movements and problem-solving guiding attention guides thought. Psychological Science, 14(5), 462–466. https://doi.org/10.1111/1467-9280.02454
  • Hahn, L., & Klein, P. (2022). Eye tracking in physics education research: A systematic literature review. Physical Review Physics Education Research, 18(1), 0131021–01310235. https://doi.org/10.1103/PhysRevPhysEducRes.18.013102
  • Han, J., Chen, L., Fu, Z., Fritchman, J., & Bao, L. (2017). Eye-tracking of visual attention in web-based assessment using the force concept inventory. European Journal of Physics, 38(4), 045702. https://doi.org/10.1088/1361-6404/aa6c49
  • Henderson, J. M., Weeks, P. A., & Hollingworth, A. (1999). The effects of semantic consistency on eye movements during complex scene viewing. Journal of Experimental Psychology: Human Perception & Performance, 25(1), 210–228. https://doi.org/10.1037/0096-1523.25.1.210
  • Hsu, L., Brewe, E., Foster, T. M., & Harper, K. A. (2004). Resource letter RPS-1: Research in problem solving. American Journal of Physics, 72(9), 1147–1156. https://doi.org/10.1119/1.1763175
  • Ibrahim, B., Ding, L., Heckler, A. F., White, D. R., & Badeau, R. (2017a). Students’ conceptual performance on synthesis physics problem solving with varying mathematical complexity. Physical Review Physics Education Research, 13(1), 0101331–01013318. https://doi.org/10.1103/PhysRevPhysEducRes.13.010133
  • Ibrahim, B., & Rebello, N. S. (2012). Representational task formats and problem solving strategies in kinematics and work. Physical Review Physics Education Research, 8(1), 0101261–01012619. https://doi.org/10.1103/PhysRevSTPER.8.010126
  • Ibrahim, B., & Ding, L. (2021). Sequential and simultaneous synthesis problem solving: A comparison of students’ gaze transitions. Physical Review Physics Education Research, 17(1), 0101261–0101269. https://doi.org/10.1103/PhysRevPhysEducRes.17.010126
  • Jacob, R. J. K., & Karn, K. S. (2003). The mind’s eye: Cognitive and applied aspects of eye movement research. In J. Hyona, R. Radach, & H. Deubel (Eds.), Eye tracking in human-computer interaction and usability research: Ready to deliver promises (pp. 573–605). Elsevier Science BV.
  • Jia, Zehao, Ding, Lin, & Zhang, Ping. (2021). Using sequential synthesis problems to investigate novice teachers’ conceptions of hydrodynamics. Physical Review Physics Education Research, 17(1), 177. http://doi.org/10.1103/PhysRevPhysEducRes.17.010142
  • Johnson, C. I., & Mayer, R. E. (2012). An eye movement analysis of the spatial contiguity in multimedia learning. Journal of Experimental Psychology: Applied, 18(2), 178–191. https://doi.org/10.1037/a0026923
  • Just, M. A., & Carpenter, P. A. (1976). Eye fixations and cognitive processes. Cognitive Psychology, 8(4), 441–480. https://doi.org/10.1016/0010-0285(76)90015-3
  • Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 87(4), 329–353. https://doi.org/10.1037/0033-295X.87.4.329
  • Klein, P., Becker, S., Küchemann, S., & Kuhn, J. (2021). Test of understanding graphs in kinematics: Item objectives confirmed by clustering eye movement transitions. Physical Review Physics Education Research, 17(1), 0131021–0131025. https://doi.org/10.1103/PhysRevPhysEducRes.17.013102
  • Klein, P., Viiri, J., Mozaffari, S., Dengel, A., & Kuhn, J. (2018). Instruction-based clinical eye-tracking study on the visual interpretation of divergence: How do students look at vector field plots? Physical Review Physics Education Research, 14(1), 0101161–01011617. https://doi.org/10.1103/PhysRevPhysEducRes.14.010116
  • Krejtz, K., Duchowski, A. T., Krejtz, I., & Kopacz, A. (2016). Gaze transitions when learning with multimedia. Journal of Eye Movement Research, 9(1), 1–17. https://doi.org/10.16910/jemr.9.1.5
  • Lin, J. H., & Lin, S. J. (2014). Tracking eye movements when solving geometry problems with handwriting devices. Journal of Eye Movement Research, 7(1), 1–15. https://doi.org/10.16910/jemr.7.1.2
  • Lin, S., & Singh, C. (2011). Using isomorphic problems to learn introductory physics. Physical Review Physics Education Research, 7(2), 0201041–02010416. https://doi.org/10.1103/PhysRevSTPER.7.020104
  • Loftus, G. R., & Mackworth, N. H. (1978). Cognitive determinants of fixation location during picture viewing. Journal of Experimental Psychology: Human Perception and Performance, 4(4), 565–572. https://doi.org/10.1037/0096-1523.4.4.565
  • Madsen, A., Larson, A. M., Loschky, L. C., & Rebello, N. S. (2012). Differences in visual attention between those who correctly and incorrectly answer physics problems. Physical Review Physics Education Research, 8(1), 0101221–01012213. https://doi.org/10.1103/PhysRevSTPER.8.010122
  • Maloney, D. P. (1994). Research on problem solving: Physics. In D. L. Gable (Ed.), Handbook of research on science teaching and learning. A project of the national science teachers association (pp. 327–354). MacMillan Publisher Company.
  • Mason, A., & Singh, C. (2010). Helping students learn effective problem solving strategies by reflecting with peers. American Journal of Physics, 78(7), 748–754. https://doi.org/10.1119/1.3319652
  • Mayer, R. E. (2010). Unique contributions of eye-tracking research to the study of learning with graphics. Learning and Instruction, 20(2), 167–171. https://doi.org/10.1016/j.learninstruc.2009.02.012
  • Meltzer, D. E., & Thornton, R. K. (2012). Resource letter ALIP-1: Active-learning instruction in physics. American Journal of Physics, 80(6), 478–496. https://doi.org/10.1119/1.3678299
  • Muldner, K., & Burleson, W. (2015). Utilizing sensor data to model students’ creativity in a digital environment. Computers in Human Behavior, 42, 127–137. https://doi.org/10.1016/j.chb.2013.10.060
  • Nuthmann, A., & Henderson, J. M. (2012). Using CRISP to model global characteristics of fixation durations in scene viewing and reading a common mechanism. Visual Cognition, 20(4-5), 457–494. https://doi.org/10.1080/13506285.2012.670142
  • Ogilvie, C. A. (2009). Changes in students’ problem-solving strategies in a course that includes context-rich, multifaceted problems. Physical Review Physics Education Research, 5(2), 0201021–02010214. https://doi.org/10.1103/PhysRevSTPER.5.020102
  • Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372–424. https://doi.org/10.1037/0033-2909.124.3.372
  • Richardson, D. C., & Spivey, M. J. (2000). Representation, space and hollywood squares: Looking at things that aren’t there anymore. Cognition, 76(3), 269–296. https://doi.org/10.1016/S0010-0277(00)00084-6
  • Rosengrant, D., Van Heuvelen, A., & Etkina, E. (2009). Do students use and understand free body diagrams? Physical Review Physics Education Research, 5(1), 0101081–01010813. https://doi.org/10.1103/PhysRevSTPER.5.010108
  • Salvucci, D. D., & Anderson, J. R. (2001). Automated eye-movement protocol analysis. Human-Computer Interaction, 16(1), 39–86. https://doi.org/10.1207/S15327051HCI1601_2
  • Salvucci, D. D., & Goldberg, J. H. (2000). Identifying fixations and saccades in eye-tracking protocols. Proceedings of the 2000 symposium on eye tracking research and applications (ACM, New York, USA, 2000), 71-78.
  • Schindler, M., & Lilientha, A. J. (2019). Domain-specific interpretation of eye tracking data: Towards a refined use of the eye-mind hypothesis for the field of geometry. Educational Studies in Mathematics, 101(1), 123–139. https://doi.org/10.1007/s10649-019-9878-z
  • Smith, A. D., Mestre, J. P., & Ross, B. H. (2010). Eye-gaze patterns as students study worked-out examples in mechanics. Physical Review Physics Education Research, 6(2), 0201181–0201189. https://doi.org/10.1103/PhysRevSTPER.6.020118
  • Spivey, M. J., & Geng, J. J. (2001). Oculomotor mechanisms activated by imagery and memory eye movements to absent object. Psychology Research, 65(4), 235–241. https://doi.org/10.1007/s004260100059
  • Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. https://doi.org/10.1207/s15516709cog1202_4
  • Underwood, G., Jebbett, L., & Roberts, K. (2004). Inspecting pictures for information to verify a sentence: Eye movements in general encoding and in focused search. The Quarterly Journal of Experimental Psychology Section A, 57(1), 165–182. https://doi.org/10.1080/02724980343000189
  • Van Heuvelen, A. (1991). Learning to think like a physicist: A review of research-based instructional strategies. American Journal of Physics, 59(10), 891–897. https://doi.org/10.1119/1.16667
  • Wang, Q., Yang, S., Liu, M., Cao, Z., & Ma, Q. (2014). An eye-tracking study of website complexity from cognitive load perspective. Decision Support Systems, 62, 1–10. https://doi.org/10.1016/j.dss.2014.02.007
  • Xu, R. Q. (2013). Internet computer coaches for introductory physics problem solving, Ph.D. dissertation, University of Minnesota (unpublished PhD thesis).
  • Zu, T., Hutson, J., Loschky, L., & Rebello, N. S. (2019). Using eye movements to measure intrinsic, extraneous, and germane load in a multimedia learning environment. Journal of Educational Psychology, 112(7), 1338–1352. https://doi.org/10.1037/edu0000441