1,428
Views
0
CrossRef citations to date
0
Altmetric
Articles

Which student problems in experimentation are related to one another?

ORCID Icon
Pages 781-805 | Received 21 Feb 2022, Accepted 29 Jan 2023, Published online: 19 Feb 2023

References

  • Aditomo, A., & Klieme, E. (2020). Forms of inquiry-based science instruction and their relations with learning outcomes: evidence from high and low-performing education systems. International Journal of Science Education, 42(4), 504–525. https://doi.org/10.1080/09500693.2020.1716093
  • Backhaus, K., Erichson, B., Plinke, W., & Weiber, R. (2011). Multivariate Analysemethoden: Eine anwendungsorientierte Einführung [Multivariate analysis methods: An application-oriented introduction]. Springer.
  • Baur, A. (2015). Inwieweit eignen sich bisherige Diagnoseverfahren des Bereichs Experimentieren für die Schulpraxis? [To what extent are present diagnosis procedures of the area of experimentation suitable for use in school?]. Biologie Lehren und Lernen – Zeitschrift für Didaktik der Biologie, 19(1), 25–36. https://doi.org/10.2390/zdb-v19-i1-316
  • Baur, A. (2016). Problempunkte von Schülerinnen und Schülern bei der experimentellen Methode: Manuelle Fehler, methodische Fehler und Fehlkonzepte [Pupils‘ problems in the application of the experimental method: Manual and metodical mistakes, misconceptions, and pupils’ idiosyncratic approaches]. In U. Gebhard & M. Hammann (Eds.), Lehr- und Lernforschung in der Biologiedidaktik 7 [Research in biology educational science] (pp. 191–205). Innsbruck: Studien Verlag.
  • Baur, A. (2018). Fehler, Fehlkonzepte und spezifische Vorgehensweisen von Schülerinnen und Schülern beim Experimentieren: Ergebnisse einer videogestützten Beobachtung [Mistakes, Misconceptions, and Pupils’ Idiosyncratic Approaches to Experimentation: Findings from an Observation]. Zeitschrift für Didaktik der Naturwissenschaften, 24(1), 115–129. https://doi.org/10.1007/s40573-018-0078-7
  • Baur, A. (2021). Errors made by 5th-, 6th-, and 9th-graders when planning and performing experiments: Results of video based comparisons. Zeitschrift für Didaktik der Biologie (ZDB) Biologie Lehren und Lernen, 25, 45–63. https://doi.org/10.11576/zdb-3576
  • Bell, R. L., Smetana, L., & Binns, I. (2005). Simplifying inquiry instruction. Science Teacher, 72(7), 30–33.
  • Boaventura, D., Faria, C., Chagas, I., & Galvão, C. (2013). Promoting science outdoor activities for elementary school children: Contributions from a research laboratory. International Journal of Science Education, 35(5), 796–814. https://doi.org/10.1080/09500693.2011.583292
  • Bybee, R. W. (1997). Achieving scientific literacy: From purposes to practices. Heinemann.
  • Capps, D. K., Shemwell J. T., & Young A. M. (2016). Over reported and misunderstood? A study of teachers’ reported enactment and knowledge of inquiry-based science teaching. International Journal of Science Education, 38(6), 934–959, https://doi.org/10.1080/09500693.2016.1173261
  • Carey, S., Evants, R., Honda, M., Jay, E., & Unger, C. (1989). ‘An experiment is when you try it and see if it works’: a study of grade 7 students’ understanding of the construction of scientific knowledge. International Journal of Science Education, 11(5)(special issue), 514–529. https://doi.org/10.1080/0950069890110504
  • Chen, Z., & Klahr, D. (1999). All other things being equal: Acquisition and transfer of the Control of Variables Strategy. Child Development, 70(5), 1098–1120. https://doi.org/10.1111/1467-8624.00081
  • Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63(1), 1–49. https://doi.org/10.3102/00346543063001001
  • Chinn, C. A., & Brewer, W. F. (1998). An empirical test of a taxonomy of responses to anomalous data in science. Journal of Research in Science Teaching, 35(6), 623–654. https://doi.org/10.1002/(SICI)1098-2736(199808)35:6<623::AID-TEA3>3.0.CO;2-O
  • Duit, R., Treagust, D. F., & Widodo, A. (2013). Teaching science for conceptual change: Theory and practice. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 487–503). Taylor and Francis.
  • Dunbar, K., & Klahr, D. (1989). Developmental differences in scientific discovery processes. In D. Klahr (Ed.), Complex information processing: The impact of Herbert A. Simon (pp. 109–143).
  • ELAN (Version 5.2) [Computer software]. (2018). Nijmegen: Max Planck Institute for Psycholinguistics, The Language Archive. https://archive.mpi.nl/tla/elan
  • Gauld, C. (1986). Models, meters and memory. Research In Science Education, 16(1), 49–54. https://doi.org/10.1007/BF02356817
  • Germann, P. J., Aram, R., & Burke, G. (1996). Identifying patterns and relationships among the responses of seventh-grade students to the science process skill of designing experiments. Journal of Research in Science Teaching, 33(1), 79–99. https://doi.org/10.1002/(SICI)1098-2736(199601)33:1<79::AID-TEA5>3.0.CO;2-M
  • Glaser, R., Schauble, L., Raghavan, K., & Zeitz, C. (1992). Scientific reasoning across different domains. In Corte, E. de, Linn, M.C., Mandl, H., & Verschaffel, L. (Ed.), Computer-based learning environments and problem solving (pp. 345–371). Springer.
  • Greve, W., & Wentura, D. (1997). Wissenschaftliche beobachtung: Eine einführung [scientific observation: An introduction]. Beltz.
  • Hammann, M., Phan, T. T. H., Ehmer, M., & Bayrhuber, H. (2006). Fehlerfrei experimentieren [experiment correctly]. Der Mathematische und Naturwissenschaftliche Unterricht, 59(5), 292–299.
  • Hammann, M., Phan, T. T. H., Ehmer, M., & Grimm, T. (2008). Assessing pupils’ skills in experimentation. Journal of Biological Education, 42(2), 66–72. https://doi.org/10.1080/00219266.2008.9656113
  • Hodson, D. (2014). Learning science, learning about science, doing science: Different goals demand different learning methods. International Journal of Science Education, 36(15), 2534–2553. https://doi.org/10.1080/09500693.2014.899722
  • Jong, D., van Joolingen, T., & R, W. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68(2), 179–201. https://doi.org/10.3102/00346543068002179
  • Kassambara, A. (2017). Practical guide to cluster analysis in R: Unsupervised machine learning. Amazon.
  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86. https://doi.org/10.1207/s15326985ep4102_1
  • Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science instruction. Psychological Science, 15(10), 661–667. https://doi.org/10.1111/j.0956-7976.2004.00737.x
  • Krefting, L. (1991). Rigor in qualitative research: The assessment of trustworthiness. The American Journal of Occupational Therapy, 45(3), 214–222. https://doi.org/10.5014/ajot.45.3.214
  • Kuhn, D. (1989). Children and adults as intuitive scientists. Psychological Review, 96(4), 674–689. https://doi.org/10.1037/0033-295X.96.4.674
  • Kuhn, D., & Dean, D. (2005). Is developing scientific thinking all about learning to control variables? Psychological Science, 16(11), 866–870. https://doi.org/10.1111/j.1467-9280.2005.01628.x
  • Lajoie, S. (2005). Extending the scaffolding metaphor. Instructional Science 33(5-6), 541–557 https://doi.org/10.1007/s11251-005-1279-2
  • Leonhart, R. (2004). Lehrbuch statistik: Einstieg und vertiefung [textbook statistics: Entry and deepening]. Huber.
  • Ludwig, T., Priemer, B., & Lewalter, D. (2021). Assessing secondary school students’ justifications for supporting or rejecting a scientific hypothesis in the physics lab. Research in Science Education, 51, 819–844. https://doi.org/10.1007/s11165-019-09862-4
  • Mayer, J. (2007). Erkenntnisgewinnung als wissenschaftliches Problemlösen [Inquiry as scientific problem-solving]. In D. Krüger, & H. Vogt (Eds.), Theorien in der biologiedidaktischen Forschung (pp. 177–186). Springer.
  • Mayring, P. (2008). Qualitative inhaltsanalyse. Grundlagen und Techniken [Qualitative content analysis: Basics and techniques]. Beltz.
  • Meier, M., & Mayer, M. (2012). Experimentierkompetenz praktisch erfassen. Entwicklung und Validierung eines anwendungsbezogenen Aufgabendesigns [Diagnosing experimental competence: Development and validation of an application-oriented task design]. In Harms, U., & Bogner, F.X. (Ed.), Lehr- und Lernforschung in der Biologiedidaktik (p. 81-98) [Research in biology educational science]. Studien Verlag.
  • Metcalfe, J. (2017). Learning from errors. Annual Review of Psychology, 68(1), 465–489. https://doi.org/10.1146/annurev-psych-010416-044022
  • Millar, R., & Lubben, F. (1996). Investigative work in science: The role of prior expectations and evidence in shaping conclusions. Educational Research, 13(3), 28–34.
  • Mittelstädt, M., & Winke, J. (2020). Clusteranalyse [Cluster analysis]. Independently.
  • Nieminen, P., Hähkiöniemi, M. & Viiri, J. (2021). Forms and functions of on-the-fly formative assessment conversations in physics inquiry lessons. International Journal of Science Education, 43(3), 362–384. https://doi.org/10.1080/09500693.2020.1713417
  • Oecd [organisation for econonomic Co-operation and development]. (2017). PISA 2015 assessment and analytical framework. Paris: OECD.
  • Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47–61. https://doi.org/10.1016/j.edurev.2015.02.003
  • Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7
  • Ruiz-Primo, M. A., & Shavelson, R. J. (1996). Rhetoric and reality in science performance assessments: An update. Journal of Research in Science Teaching, 33(10), 1045–1063. https://doi.org/10.1002/(SICI)1098-2736(199612)33:10<1045::AID-TEA1>3.0.CO;2-S
  • Schauble, L., Klopfer, L. E., & Raghavan, K. (1991). Students’ transition from an engineering model to a science model of experimentation. Journal of Research in Science Teaching, 28(9), 859–882. https://doi.org/10.1002/tea.3660280910
  • Schumacher, R. (2008). Der produktive Umgang mit Fehlern. Fehler als Lerngelegenheit und Orientierungshilfe [The productive use of errors: Errors as learning opportunity and orientation aid]. In Caspary, R. (Ed.), Nur wer Fehler macht, kommt weiter: Wege zu einer neuen Lernkultur [Only those who make errors will get ahead: Ways to new learning culture] (pp. 49–72). Freiburg i. B.: Herder.
  • Siler, S. A., & Klahr, D. (2012). Detecting, classifying, and remediating: Children’s explicit and implicit misconceptions about experimental design. In R. W. Proctor, & E. J. Capaldi (Eds.), Psychology of science (pp. 137–180). Oxford University Press.
  • Sweller, J., Kirschner, P. A., & Clark, R. E. (2007). Why minimally guided teaching techniques do not work: A reply to commentaries. Educational Psychologist, 42(2), 115–121. https://doi.org/10.1080/00461520701263426
  • Van Uum, M. S. J., Verhoeff, R. P., & Peeters, M. (2016). Inquiry-based science education: towards a pedagogical framework for primary school teachers. International Journal of Science Education, 38(3), 450–469. https://doi.org/10.1080/09500693.2016.1147660
  • Wahser, I., & Sumfleth, E. (2008). Training experimenteller Arbeitsweisen zur Unterstützung kooperativer Kleingruppenarbeit im Fach Chemie [Training of experimental working to support cooperative small group work in chemistry]. Zeitschrift für Didaktik der Naturwissenschaften, 14, 219–241.
  • Watson, B., & Konicek, R. (1990). Teaching for conceptual change: Confronting children's experience. Phi Delta Kappan, 71(9), 680–684.
  • Zhai, J., Jocz, J. A., & Tan, A.-L. (2014). ‘Am I Like a Scientist?’: Primary children's images of doing science in school. International Journal of Science Education, 36(4), 553–576. https://doi.org/10.1080/09500693.2013.791958
  • Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27(2), 172–223. doi:10.1016/j.dr.2006.12.001