484
Views
4
CrossRef citations to date
0
Altmetric
Articles

Stress-induced martensitic transformation in metastable austenite grains during nanoindentation investigation

&
Pages 417-431 | Received 06 Feb 2021, Accepted 17 May 2021, Published online: 07 Jun 2021

References

  • P. Clapp, How would we recognize a martensitic transformation if it bumped into us on a dark & austy night? J. Phys. IV 5 (1995), pp. C8-11–C18-19.
  • G.B. Olson and M. Cohen, A perspective on martensitic nucleation. Annu. Rev. Mater. Sci. 11 (1981), pp. 1–32.
  • Z. Nishiyama, Martensitic Transformation, Elsevier, 2012.
  • J.W. Christian, G.B. Olson, and M. Cohen, Classification of displacive transformations: what is a martensitic transformation? J. Phys. IV 5 (1995), pp. C8-3–C8-10.
  • G. Krauss, Martensite in steel: strength and structure. Mater. Sci. Eng. A 273 (1999), pp. 40–57.
  • G. Olson and M. Cohen, Kinetics of strain-induced martensitic nucleation. Metall. Mater. Trans. A 6 (1975), pp. 791–795.
  • I. Tamura, Deformation-induced martensitic transformation and transformation-induced plasticity in steels. Met. Sci. 16 (1982), pp. 245–253.
  • B. He, H. Luo, and M. Huang, Experimental investigation on a novel medium Mn steel combining transformation-induced plasticity and twinning-induced plasticity effects. Int. J. Plast. 78 (2016), pp. 173–186.
  • J. Shi, X.J. Sun, M.Q. Wang, W.J. Hui, H. Dong, and W.Q. Cao, Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite. Scr. Mater. 63 (2010), pp. 815–818.
  • S. Chatterjee and H.K.D.H. Bhadeshia, Transformation induced plasticity assisted steels: stress or strain affected martensitic transformation? Mater. Sci. Technol. 23 (2007), pp. 1101–1104.
  • B.C. De Cooman, P. Gibbs, S. Lee, and D.K. Matlock, Transmission electron microscopy analysis of yielding in ultrafine-grained medium Mn transformation-induced plasticity steel. Metall. Mater. Trans. A 44 (2013), pp. 2563–2572.
  • G. Olson and M. Cohen, A mechanism for the strain-induced nucleation of martensitic transformations. J. Less Common Met. 28 (1972), pp. 107–118.
  • J.H. Ryu, J.I. Kim, H.S. Kim, C.-S. Oh, H.K.D.H. Bhadeshia, and D.-W. Suh, Austenite stability and heterogeneous deformation in fine-grained transformation-induced plasticity-assisted steel. Scr. Mater. 68 (2013), pp. 933–936.
  • L. Liu, B. He, and M. Huang, The role of transformation-induced plasticity in the development of advanced high strength steels. Adv. Eng. Mater. 20 (2018), pp. 1701083.
  • E. Jimenez-Melero, N. Van Dijk, L. Zhao, J. Sietsma, S. Offerman, J. Wright, and S. Van der Zwaag, The effect of aluminium and phosphorus on the stability of individual austenite grains in TRIP steels. Acta Mater. 57 (2009), pp. 533–543.
  • K. Andrews, Empirical formulae for the calculation of some transformation temperatures. J. Iron Steel Inst. Jpn 203 (1965), pp. 721–727.
  • H.S. Yang and H.K.D.H. Bhadeshia, Austenite grain size and the martensite-start temperature. Scr. Mater. 60 (2009), pp. 493–495.
  • S. Chatterjee, H.S. Wang, J.R. Yang, and H.K.D.H. Bhadeshia, Mechanical stabilisation of austenite. Mater. Sci. Technol. 22 (2006), pp. 641–644.
  • X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang, The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scr. Mater. 68 (2013), pp. 321–324.
  • D. De Knijf, T. Nguyen-Minh, R. Petrov, L. Kestens, and J.J. Jonas, Orientation dependence of the martensite transformation in a quenched and partitioned steel subjected to uniaxial tension. J. Appl. Crystallogr. 47 (2014), pp. 1261–1266.
  • P. Jacques, F. Delannay, and J. Ladrière, On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels. Metall. Mater. Trans. A 32 (2001), pp. 2759–2768.
  • B. He, On the factors governing austenite stability: intrinsic versus extrinsic. Materials 13 (2020), pp. 3440.
  • T.H. Ahn, C.S. Oh, D.H. Kim, K.H. Oh, H. Bei, E.P. George, and H.N. Han, Investigation of strain-induced martensitic transformation in metastable austenite using nanoindentation. Scr. Mater. 63 (2010), pp. 540–543.
  • B.B. He, M.X. Huang, Z.Y. Liang, A.H.W. Ngan, H.W. Luo, J. Shi, W.Q. Cao, and H. Dong, Nanoindentation investigation on the mechanical stability of individual austenite grains in a medium-Mn transformation-induced plasticity steel. Scr. Mater. 69 (2013), pp. 215–218.
  • B. He and M. Huang, On the mechanical stability of austenite matrix after martensite formation in a medium Mn steel. Metall. Mater. Trans. A 47 (2016), pp. 3346–3353.
  • Z. Xiong, G. Casillas, A.A. Saleh, S. Cui, and E.V. Pereloma, Observation of deformation twinning and martensitic transformation during nanoindentation of a transformation-induced plasticity steel. Sci. Rep. 7 (2017), pp. 1–6.
  • W.A. Soer, K.E. Aifantis, and J.T.M. De Hosson, Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals. Acta Mater. 53 (2005), pp. 4665–4676.
  • C.L. Woodcock and D.F. Bahr, Plastic zone evolution around small scale indentations. Scr. Mater. 43 (2000), pp. 783–788.
  • L. Zhang and T. Ohmura, Plasticity initiation and evolution during nanoindentation of an iron–3% silicon crystal. Phys. Rev. Lett. 112 (2014), pp. 145504.
  • B.B. He, M.X. Huang, A.H.W. Ngan, and S. Van Der Zwaag, Effect of free surface on the stability of individual retained austenite grains in a duplex stainless steel. Metall. Mater. Trans. A 45 (2014), pp. 4875–4881.
  • S. Shim, H. Bei, E.P. George, and G.M. Pharr, A different type of indentation size effect. Scr. Mater. 59 (2008), pp. 1095–1098.
  • H. Bei, Y.F. Gao, S. Shim, E.P. George, and G.M. Pharr, Strength differences arising from homogeneous versus heterogeneous dislocation nucleation. Phys. Rev. B 77 (2008) p.060103. R.
  • K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985.
  • A. Gouldstone, H.J. Koh, K.Y. Zeng, A.E. Giannakopoulos, and S. Suresh, Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48 (2000), pp. 2277–2295.
  • W.C. Oliver and G.M. Pharr, Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7 (1992), pp. 1564–1583.
  • D. Ma, C. Ong, and T. Zhang, An instrumented indentation method for Young’s modulus measurement with accuracy estimation. Exp. Mech. 49 (2009), pp. 719–729.
  • F. Lani, Q. Furnémont, T. Van Rompaey, F. Delannay, P.J. Jacques, and T. Pardoen, Multiscale mechanics of TRIP-assisted multiphase steels: II. Micromechanical modelling. Acta Mater. 55 (2007), pp. 3695–3705.
  • A. Barnoush, Correlation between dislocation density and nanomechanical response during nanoindentation. Acta Mater. 60 (2012), pp. 1268–1277.
  • F.M. Borodich, L.M. Keer, and C.S. Korach, Analytical study of fundamental nanoindentation test relations for indenters of non-ideal shapes. Nanotechnology 14 (2003), pp. 803.
  • E.J. Seo, J.K. Kim, L. Cho, J. Mola, C.Y. Oh, and B.C. De Cooman, Micro-plasticity of medium Mn austenitic steel: perfect dislocation plasticity and deformation twinning. Acta Mater. 135 (2017), pp. 112–123.
  • M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater. Sci. Eng. A 527 (2010), pp. 2738–2746.
  • L. Qi, A.G. Khachaturyan, and J.W. Morris, The microstructure of dislocated martensitic steel: theory. Acta Mater. 76 (2014), pp. 23–39.
  • E. Olivas, J. Swadener, and Y.-L. Shen, Nanoindentation measurement of surface residual stresses in particle-reinforced metal matrix composites. Scr. Mater. 54 (2006), pp. 263–268.
  • K. Tsuzaki, N. Harada, and T. Maki, Potency of grain boundaries as martensitic nucleation sites. J. Phys. IV 5 (1995), pp. C8-167–C168-172.
  • S. Kajiwara, Roles of dislocations and grain boundaries in martensite nucleation. Metall. Mater. Trans. A 17 (1986), pp. 1693–1702.
  • L. Kaufman and M. Cohen, Thermodynamics and kinetics of martensitic transformations. Prog. Metal Phys. 7 (1958), pp. 165–246.
  • M. Cohen, Nucleation of solid state transformations. Trans. AIME 212 (1958), pp. 171–183.
  • J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Roy. Soc. London A 241 (1957), pp. 376–396.
  • J.R. Patel and M. Cohen, Criterion for the action of applied stress in the martensitic transformation. Acta Metall. 1 (1953), pp. 531–538.
  • H.K.D.H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties, 3rd ed., Butterworth-Heinemann, Oxford, 2006.
  • Q. Meng, Y. Rong, and T. Hsu, Effect of internal stress on autocatalytic nucleation of martensitic transformation. Metall. Mater. Trans. A 37 (2006), pp. 1405–1411.
  • N. Tsuchida, Y. Morimoto, T. Tonan, Y. Shibata, K. Fukaura, and R. Ueji, Stress-induced martensitic transformation behaviors at various temperatures and their TRIP effects in SUS304 metastable austenitic stainless steel. ISIJ Int. 51 (2011), pp. 124–129.
  • Y. Kim, T.-H. Ahn, D.-W. Suh, and H.N. Han, Variant selection during mechanically induced martensitic transformation of metastable austenite by nanoindentation. Scr. Mater 104 (2015), pp. 13–16.
  • S. Sadeghpour, A. Kermanpur, and A. Najafizadeh, Investigation of the effect of grain size on the strain-induced martensitic transformation in a high-Mn stainless steel using nanoindentation. Mater. Sci. Eng. A 612 (2014), pp. 214–216.
  • T.-H. Ahn, S.B. Lee, K.-T. Park, K.H. Oh, and H.N. Han, Strain-induced ϵ-martensite transformation during nanoindentation of high-nitrogen steel. Mater. Sci. Eng. A 598 (2014), pp. 56–61.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.