268
Views
0
CrossRef citations to date
0
Altmetric
Articles

In situ change of fractal structure in coal with coking capability during high-temperature carbonisation

, , , , , & show all
Pages 81-92 | Received 11 Jul 2021, Accepted 13 Oct 2021, Published online: 29 Oct 2021

References

  • R.H. Schlosberg, Chemistry of Coal Conversion, Springer, Boston, 1985.
  • J.G. Speight, The Chemistry and Technology of Coal, Wyoming, USA, CRC Press, Wyoming, USA, 2012.
  • C.H. Porter, Coal carbonization and the world's fuel. Ind. Eng. Chem. 4 (1923), pp. 335–338.
  • E.W. Lang, H.G. Smith, and C. Bordenca, Carbonization of agglomerating coals in a fluidized bed. Ind. Eng. Chem. 3 (1957), pp. 355–359.
  • D. Hays, J. Patrick, and A. Walker, Pore structure development during coal carbonization. 1. Behaviour of single coals. Fuel 4 (1976), pp. 297–302.
  • P.I. Gold, Thermal analysis of exothermic processes in coal pyrolysis. Thermo Chim. Acta 2 (1980), pp. 135–152.
  • S. Miura, Change of pore properties during carbonization of coking coal. Carbon. N. Y. 2 (1980), pp. 93–108.
  • S. Kasaoka, Y. Sakata, and M. Shimada, Effects of coal carbonization conditions on rate of steam gasification of char. Fuel 5 (1987), pp. 697–701.
  • X.F. Liu, D.Z. Song, X.Q. He, Z.P. Wang, M.G. Zeng, and L.K. Wang, Quantitative analysis of coal nanopore characteristics using atomic force microscopy. Powder Technol. 346 (2019), pp. 332–340.
  • Y.K. Ma, B.S. Nie, X.Q. He, X.C. Li, J.Q. Meng, and D.Z. Song, Mechanism investigation on coal and gas outburst: an overview. Int. J. Min. Met. Mater. 27 (2020), pp. 872–887.
  • X.F. Liu, D.Z. Song, X.Q. He, B.S. Nie, and L.K. Wang, Insight into the macromolecular structural differences between hard coal and deformed soft coal. Fuel 245 (2019), pp. 188–197.
  • J.L. Faulon, J.P. Mathews, G.A. Carlson, and P.G. Hatcher, Correlation between microporosity and fractal dimension of bituminous coal based on computer-generated models. Energy Fuels 8 (1994), pp. 408–414.
  • X.L. Wang, R. He, and Y.L. Chen, Evolution of porous fractal properties during coal devolatilization. Fuel 87 (2008), pp. 878–884.
  • W.I. Friesen, and R.J. Mikula, Fractal dimensions of coal particles. J. Colloid Interf Sci 120 (1987), pp. 263–271.
  • F. Xie, D.F. Li, Z.H. Li, Z.Z. Li, G. Mo, and B.L. Lv, Small-angle X-ray scattering study on the fractal structure of solid products of bituminous coal at different carbonization temperatures. Philos. Mag. Lett 99 (2019), pp. 95–101.
  • Q. Lv, Z.H. Li, L.Z. Liu, Y.X. Zhao, D.F. Li, W.Y. Guo, G. Mo, and B.L. Lv, In situ SAXS study of fractal structure of non-caking coal during carbonisation. Philos. Mag. Lett 101 (2021), pp. 60–67.
  • H.D. Bale, Small-Angle X-Ray-scattering investigation of submicrosco-pic porosity with fractal properties. Phys. Rev. Lett 53 (1984), pp. 596–599.
  • P.J. McMahon, and S.D. Moss, Derivation of infinite-slit-smeared small-angle scattering from porous surface and porous mass fractals. J. Appl. Crystallogr. 32 (1999), pp. 956–962.
  • P.U. Sastry, D. Sen, S. Mazumder, and K.S. Chandrasekaran, Structural variations in lignite coal: a small angle X-ray scattering investigation. Solid State Commun. 114 (2000), pp. 329–333.
  • J.X. Liu, X.M. Jiang, X.Y. Huang, and S.H. Wu, Morphological Characterization of super fine pulverized coal particle. part 4. Nitrogen adsorption and small angle X-ray scattering study. Energy Fuels 24 (2010), pp. 3072–3085.
  • Y.X. Wang, Z.H. Li, J. Kong, L.P. Chang, D.F. Li, and B.L. Lv, In-situ SAXS study on fractal of Jincheng anthracite during high-temperature carbonisation. Philos. Mag. Lett. 101 (2021), pp. 320–329.
  • Y.X. Wang, W.F. Huang, Z.H. Li, L.P. Chang, D.F. Li, R.C. Chen, Q. Lv, Y.X. Zhao, and B.L. Lv, Small furnace for the small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) characterization of the high temperature carbonization of coal. Instrum. Sci. Technol 4 (2021), pp. 445–456.
  • Z.H. Li, Z.H. Wu, G. Mo, X.Q. Xing, and P. Liu, A small angle X-ray scattering station at Beijing synchrotron radiation facility. Instrum. Sci. Technol 2 (2014), pp. 128–141.
  • A.J. Allen, F. Zhang, R.J. Kline, W.F. Guthrie, and J. Ilavsky, NIST Standard Reference material 3600: absolute intensity calibration Standard for small-angle X-ray scattering. J. Appl. Crystallogr. 50 (2017), pp. 462–474.
  • F. Xie, Z.H. Li, Z.Z. Li, D.F. Li, Y.X. Gao, and B. Wang, Absolute intensity calibration and application at BSRF SAXS station. Nucl. Instrum. Meth. A 900 (2018), pp. 64–68.
  • A. Hammersley, FIT2D: a multi-purpose data reduction, analysis and visualization program. J. Appl. Crystallogr. 49 (2016), pp. 646–652.
  • Z.H. Li, A program for SAXS data processing and analysis. Chinese Phys. C 37 (2013), pp. 110–115.
  • I. Bressler, B. Pauw, and A. Thünemann, McSAS: software for the retrieval of model parameter distributions from scattering patterns. J. Appl. Crystallogr. 48 (2015), pp. 962–969.
  • D. Lozano-Castelló, E. Raymundo-Piñero, D. Cazorla-Amorós, A. Linares-Solano, M. Müller, and C. Riekel, Characterization of pore distribution in activated carbon fibers by microbeam small angle X-ray scattering. Carbon. N. Y. 40 (2002), pp. 2727–2735.
  • W. Gille, Particle and Particle Systems Characterization: Small-Angle Scattering (SAS) Applications, Halle-Wittenberg, Germany, CRC Press, Halle-Wittenberg, Germany, 2016.
  • P. Pfeifer, F. Ehrburger-Dolle, T.P. Rieker, M.T. González, W.P. Hoffman, M. Molina-Sabio, F. Rodríguez-Reinoso, P.W. Schmidt, and D.J. Voss, Nearly space-filling fractal networks of carbon nanopores. Phys. Rev. Lett 88 (2002), pp. 115502.
  • F. Xie, Z.H. Li, W.J. Wang, D.F. Li, Z.Z. Li, B.L. Lv, and B. Hou, In-situ SAXS study of pore structure during carbonization of non-caking coal briquettes. Fuel 262 (2020), pp. 116547.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.