304
Views
1
CrossRef citations to date
0
Altmetric
Articles

Experimental determination of effective atomic radii of constituent elements in CrMnFeCoNi high-entropy alloy

, &
Pages 100-110 | Received 01 Jun 2021, Accepted 21 Dec 2021, Published online: 25 Jan 2022

References

  • J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy Design concepts and outcomes. Adv. Eng. Mater. 6 (2004), pp. 299–303.
  • J.W. Yeh, Y.L. Chen, S.J. Lin, and S.K. Chen, High-Entropy alloys – A New Era of exploitation. Mater. Sci. Forum 560 (2007), pp. 1–9.
  • O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19 (2011), pp. 698–706.
  • S.S. Nene, P. Agrawal, M. Frank, A. Watts, S. Shukla, C. Morphew, A. Chesetti, J.S. Park, and R.S. Mishra, Transformative high entropy alloy conquers the strength-ductility paradigm by massive interface strengthening. Scr. Mater. 203 (2021).
  • W. Li, S. Chen, and P.K. Liaw, Discovery and design of fatigue-resistant high-entropy alloys. Scr. Mater. 187 (2020), pp. 68–75.
  • W.-Y. Ching, S. San, J. Brechtl, R. Sakidja, M. Zhang, and P.K. Liaw, Fundamental electronic structure and multiatomic bonding in 13 biocompatible high-entropy alloys. npj Computational Materials 6 (2020).
  • Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61 (2014), pp. 1–93.
  • B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375 (2004), pp. 213–218.
  • Z. Wu, H. Bei, F. Otto, G.M. Pharr, and E.P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46 (2014), pp. 131–140.
  • Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81 (2014), pp. 428–441.
  • A. Gali, and E.P. George, Tensile properties of high- and medium-entropy alloys. Intermetallics 39 (2013), pp. 74–78.
  • F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61 (2013), pp. 5743–5755.
  • B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications. Science 345 (2014), pp. 1153–1158.
  • M.Z. Butt, and P. Feltham, Solid-solution hardening. J. Mater. Sci. 28 (1993), pp. 2557–2576.
  • F.R.N. Nabarro, The mechanical properties of metallic solid solutions. Proc. Phys. Soc. London 58 (1946), pp. 669–676.
  • R. Labusch, A statistical theory of solid solution hardening. physica Status Solidi (b) 41 (1970), pp. 659–669.
  • N.L. Okamoto, K. Yuge, K. Tanaka, H. Inui, and E.P. George, Atomic displacement in the CrMnFeCoNi high-entropy alloy – A scaling factor to predict solid solution strengthening. AIP. Adv. 6 (2016), 125008.
  • L. Li, Q. Fang, J. Li, B. Liu, Y. Liu, and P.K. Liaw, Lattice-distortion dependent yield strength in high entropy alloys. Mater. Sci. Eng. A 784 (2020).
  • O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 509 (2011), pp. 6043–6048.
  • M. Mizuno, K. Sugita, and H. Araki, Defect energetics for diffusion in CrMnFeCoNi high-entropy alloy from first-principles calculations. Comput. Mater. Sci. 170 (2019). 109163
  • L.R. Owen, and N.G. Jones, Quantifying local lattice distortions in alloys. Scr. Mater. 187 (2020), pp. 428–433.
  • J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen, and S.-J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Mater. Chem. Phys. 103 (2007), pp. 41–46.
  • Y. Zou, S. Maiti, W. Steurer, and R. Spolenak, Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 65 (2014), pp. 85–97.
  • L.R. Owen, E.J. Pickering, H.Y. Playford, H.J. Stone, M.G. Tucker, and N.G. Jones, An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy. Acta Mater. 122 (2017), pp. 11–18.
  • Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution Phase formation rules for multi-component alloys. Adv. Eng. Mater. 10 (2008), pp. 534–538.
  • C. Li, Y. Xue, M. Hua, T. Cao, L. Ma, and L. Wang, Microstructure and mechanical properties of Al x Si 0.2 CrFeCoNiCu 1−x high-entropy alloys. Mater. Des. 90 (2016), pp. 601–609.
  • S.S. Sohn, A. Kwiatkowski da Silva, Y. Ikeda, F. Kormann, W. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, and D. Raabe, Ultrastrong medium-entropy single-Phase alloys designed via severe lattice distortion. Adv. Mater. 31 (2019), pp. e1807142.
  • S. Mu, S. Wimmer, S. Mankovsky, H. Ebert, and G.M. Stocks, Influence of local lattice distortions on electrical transport of refractory high entropy alloys. Scr. Mater. 170 (2019), pp. 189–194.
  • A.J.C.W.W. Parrish, and J.I. Langford, International Tables for Crystallography Volume C Third Edition (2004), pp. 498–504.
  • Standard Reference Material 660c.
  • H.S. Avner, Introduction to Physical Metallurgy, McGRAW-HILL KOGAKUSHA, LTD, Tokyo, 1974.
  • V.M. Goldschmidt, On distances between atoms in metals. Zeitschrift Fur Physikalische Chemie–Stochiometrie Und Verwandtschaftslehre 133U (1928), pp. 397–419.
  • G. Laplanche, P. Gadaud, C. Bärsch, K. Demtröder, C. Reinhart, J. Schreuer, and E.P. George, Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy. J. Alloys Compd. 746 (2018), pp. 244–255.
  • S. Fang, X. Xiao, L. Xia, W. Li, and Y. Dong, Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J. Non-Cryst. Solids 321 (2003), pp. 120–125.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.