536
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design of carbide free bainitic steels for hot rolling practices

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2322552 | Received 18 Dec 2023, Accepted 16 Feb 2024, Published online: 02 Mar 2024

References

  • E. De Moor, Advanced High-Strength Sheet Steels for Automotive Applications, in High-Performance Ferrous Alloys, Springer International Publishing, Cham, 2021, pp. 113–151.
  • H.K.D.H. Bhadeshia, Bainite in Steels. 3rd ed. CRC Press, London, 2019.
  • S. Chen, R. Rana, and C. Lahaije, Study of TRIP-aided bainitic ferritic steels produced by hot press forming. Metall. Mater. Trans. A 45 (2014), pp. 2209–2218.
  • R. Rana, S. Chen, A. Haldar, and S. Das, Mechanical properties of a bainitic steel producible by hot rolling. Arch. Metall. Mater 62 (2017), pp. 2331–2338.
  • G. Gomez, T. Pérez, and H.K.D.H. Bhadeshia, Air cooled bainitic steels for strong, seamless pipes Part 1 – alloy design, kinetics and microstructure. Mater. Sci. Technol 25 (2009), pp. 1501–1507.
  • F.G. Caballero, C. Garcia-Mateo, J. Cornide, S. Allain, J. Puerta, M. Crouvizier, et al., New advanced ultra high strength bainitic steels: ductility and formability (DUCTAFORM). EUR 25977 (2013), pp.1–124.
  • S. Das, S. Kundu, and A. Haldar, Development of continuously cooled high strength bainitic steel through microstructural engineering at Tata steel. Mater. Sci. Forum 702–703 (2011), pp. 939–942.
  • S. Das, S. Sinha, A. Lodh, A.R. Chintha, M. Krugla, and A. Haldar, Hot-rolled and continuously cooled bainitic steel with good strength–elongation combination. Mater. Sci. Technol 33 (2017), pp. 1026–1037.
  • F.G. Caballero, M.J.M.J. Santofimia, C. Capdevila, C. Garcia-Mateo, and C. De García Andrés, Design of advanced bainitic steels by optimisation of TTT diagrams and T0 curves. ISIJ Int. 46 (2006), pp. 1479–1488.
  • F.G. Caballero, M.J.J. Santofimia, C. Garcia-Mateo, J. Chao, and C.G.G. de Andrés, Theoretical design and advanced microstructure in super high strength steels. Mater. Des 30 (2009), pp. 2077–2083.
  • F.G. Caballero, C. Garcia-Mateo, M.J. Santofimia, M.K. Miller, and C. García de Andrés, New experimental evidence on the incomplete transformation phenomenon in steel. Acta Mater. 57 (2009), pp. 8–17.
  • F.G. Caballero, C. Garcia-Mateo, and T. Sourmail, Bainitic steel: nanostructured, in encyclopedia of iron, steel, and their alloys. Taylor & Francis (2016), pp. 271–290.
  • H.K.D.H. Bhadeshia, and D.V. Edmonds, Bainite in silicon steels: new composition–property approach Part 1. Met. Sci 17 (1983), pp. 411–419.
  • S.M. Hasan, M. Ghosh, D. Chakrabarti, and S.B. Singh, Development of continuously cooled low-carbon, low-alloy, high strength carbide-free bainitic rail steels. Mater. Sci. Eng. A 771 (2020), pp. 1–12.
  • L. Morales-Rivas, F.G. Caballero, and C. Garcia-Mateo, Retained austenite: stability in a nanostructured bainitic steel, in Encyclopedia of Iron, Steel, and Their Alloys, Taylor & Francis, 2016. pp. 3077–3087.
  • E. Pereloma, A. Gazder, and I. Timokhina, Retained austenite: transformation-induced plasticity, in encyclopedia of iron, steel, and their alloys. Taylor & Francis (2016), pp. 3088–3103.
  • A. Eres-Castellanos, F.G. Caballero, and C. Garcia-Mateo, Stress or strain induced martensitic and bainitic transformations during ausforming processes. Acta Mater. 189 (2020), pp. 60–72.
  • F.G. Caballero, C. Garcia-Mateo, J. Chao, M.J. Santofimia, C. Capdevila, and C.G. De Andrés, Effects of morphology and stability of retained austenite on the ductility of TRIP-aided bainitic steels. ISIJ Int. 48 (2008), pp. 1256–1262.
  • H.K.D.H. Bhadeshia and R.W.K. Honeycombe, Steels: microstructure and properties, in Steels: Microstructure and Properties, H.K.D.H. Bhadeshia and R.W.K. Honeycombe, ed., Butterworth-Heinemann, Oxford, 2017, pp. 101–134.
  • P.J. Jacques, E. Girault, A. Mertens, B. Verlinden, J. van Humbeeck, F. Delannay, et al., The developments of cold-rolled TRIP-assisted multiphase steels. Al-alloyed TRIP-assisted multiphase steels. ISIJ Int. 41 (2001), pp. 1068–1074.
  • J.R. Patel, and M. Cohen, Criterion for the action of applied stress in the martensitic transformation. Acta Metall. 1 (1953), pp. 531–538.
  • T. Sourmail, and C. Garcia-Mateo, Critical assessment of models for predicting the Ms temperature of steels. Comput. Mater. Sci 34 (2005), pp. 323–334.
  • H.S. Yang, and H.K.D.H. Bhadeshia, Austenite grain size and the martensite-start temperature. Scr. Mater 60 (2009), pp. 493–495.
  • C. Wang, H. Ding, Z.Y. Tang, and J. Zhang, Effect of isothermal bainitic processing on microstructures and mechanical properties of novel Mo and Nb microalloyed TRIP steel. Ironmak. Steelmak 42 (2015), pp. 9–16.
  • V.T.T. Miihkinen, and D.V. Edmonds, Microstructural examination of two experimental steels containing silicon. Mater. Sci. Technol 3 (1987), pp. 422–431.
  • P.J. Jacques, F. Delannay, and J. Ladrière, On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels. Metall. Mater. Trans. A 32 (2001), pp. 2759–2768.
  • H.K.D.H. Bhadeshia, Thermodynamic analysis of isothermal transformation diagrams. Met. Sci 16 (1982), pp. 159–166.
  • M. Peet and H.K.D.H. Bhadeshia. MAP_STEEL_MUCG83 (Materials Algorithms Project Program Library). Cambride University (UK), software. Available at https://www.phase-trans.msm.cam.ac.uk/map/steel/programs/mucg83.html.
  • N. Saunders, Z. Guo, X. Li, A.P. Miodownik, and J.P. Schillé, Using JMatPro to model materials properties and behavior. Jom 55 (2003), pp. 60–65.
  • Z. Yang, C. Chu, F. Jiang, Y. Qin, X. Long, S. Wang, et al., Accelerating nano-bainite transformation based on a new constructed microstructural predicting model. Mater. Sci. Eng. A 748 (2019), pp. 16–20.
  • S.B. Singh, and H.K.D.H. Bhadeshia, Estimation of bainite plate-thickness in low-alloy steels. Mater. Sci. Eng. A 245 (1998), pp. 72–79.
  • Y. Wang, J. Hua, M. Kong, Y. Zeng, J. Liu, and Z. Liu, Quantitative analysis of martensite and bainite microstructures using electron backscatter diffraction. Microsc. Res. Tech 79 (2016), pp. 814–819.
  • J. Cornide, C. Garcia-Mateo, C. Capdevila, and F.G. Caballero, An assessment of the contributing factors to the nanoscale structural refinement of advanced bainitic steels. J. Alloys Compd 577 (2013), pp. S43–S47.
  • S.M.C. van Bohemen, Exploring the correlation between the austenite yield strength and the bainite lath thickness. Mater. Sci. Eng. A 731 (2018), pp. 119–123.
  • A. Eres-Castellanos, J. Hidalgo, M. Zorgani, M. Jahazi, I. Toda-Caraballo, F.G. Caballero, et al., Assessing the scale contributing factors of three carbide-free bainitic steels: A complementary theoretical and experimental approach. Mater. Des 197 (2021), pp. 1–15.
  • V. Ruiz-Jimenez, J.A. Jimenez, F.G. Caballero, and C. Garcia-Mateo, Bainitic ferrite plate thickness evolution in two nanostructured steels. Materials (Basel) 14 (2021), pp. 1–17.
  • S.H. He, B.B. He, K.Y. Zhu, and M.X. Huang, On the correlation among dislocation density, lath thickness and yield stress of bainite. Acta Mater. 135 (2017), pp. 382–389.
  • A. Eres-Castellanos, I. Toda-Caraballo, A. Latz, F.G. Caballero, and C. Garcia-Mateo, An integrated-model for austenite yield strength considering the influence of temperature and strain rate in lean steels. Mater. Des 188 (2020), pp. 1–14.
  • D.P. Koistinen, and R.E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall. 7 (1959), pp. 59–60.
  • J. Ingber, and M. Kunert, Prediction of the Martensite start temperature in high-carbon steels. Steel Res. Int 93 (2022), pp. 0–24.
  • P. Payson, and C.H. Savage, Martensite reactions in alloy steels. Trans. Am. Soc. Mater 33 (1944), pp. 261–280.
  • A. Argüelles, F. Barbés, J.I. Espeso, and C. Garcia-Mateo, Cryogenic study of the magnetic and thermal stability of retained austenite in nanostructured bainite. Sci. Technol. Adv. Mater 20 (2019), pp. 673–687.
  • S. Floreen, Producing a Tough, High Strength Cast Steel Free of Temper Embrittlement. J. Eng. Mater. Technol 101 (1979), pp. 98–103.
  • A. Preece and R.D. Carter, Temper-brittleness in high-purity iron-base alloys. J. Iron Steel Inst. 173 (1953), pp. 387-WE-Science Citation Index Expanded (SCI-EX).
  • H.-S.S. Yang, and H.K.D.H. Bhadeshia, Uncertainties in dilatometric determination of martensite start temperature. Mater. Sci. Technol 23 (2007), pp. 556–560.
  • D. San-Martin, M. Kuntz, F.G. Caballero, and C. Garcia-Mateo, A new systematic approach based on dilatometric analysis to track bainite transformation kinetics and the influence of the prior austenite grain size. Metals (Basel) 11 (2021), pp. 1–12.
  • K. Geels, D. Fowler, W.-U. Kopp and M. Rückert (eds.), Metallographic and materialographic specimen preparation, light microscopy, image analysis and hardness testing, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, 2007.
  • C. Garcia-Mateo, J.A. Jimenez, B. Lopez-Ezquerra, R. Rementeria, L. Morales-Rivas, M. Kuntz, et al., Analyzing the scale of the bainitic ferrite plates by XRD, SEM and TEM. Mater. Charact 122 (2016), pp. 83–89.
  • C.F. Jatczak, Retained austenite and its measurement by X-ray diffraction. SAE Transactions 89 (1980), pp. 1657–1676.
  • M.J. Dickson, The significance of texture parameters in phase analysis by X-ray diffraction. J. Appl. Crystallogr 2 (1969), pp. 176–180.
  • D.J. Dyson, and B. Holmes, Effect of alloying additions on the lattice parameter of austenite. J. Iron Steel Inst. 208 (1970), pp. 469–474.
  • M. Cohen, The strengthening of steel. Metall. Soc. TMS AIME 224 (1962), pp. 638–657.
  • L. Ratke, and P. lan Welch, The questionability of empirical work-hardening laws. Int. J. Mater. Res 74 (1983), pp. 226–232.
  • T.B. Gonoring, M. Gonçalves de Miranda Salustre, G.A. Caetano, J.B. Ribeiro Martins, and M.T. D’Azeredo Orlando, A constitutive model for the uniaxial tensile plastic behavior of metals based on the instantaneous strain-hardening exponent. J. Mater. Res. Technol 20 (2022), pp. 2421–2443.
  • K. Sugimoto, M. Kobayashi, and S. Hashimoto, Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel. Metall. Trans. A 23 (1992), pp. 3085–3091.
  • C. Garcia-Mateo, and F.G. Caballero, The role of retained austenite on tensile properties of steels with bainitic microstructures. Mater. Trans 46 (2005), pp. 1839–1846.
  • C. Garcia-Mateo, F.G. Caballero, J. Chao, C. Capdevila, and C. Garcia de Andres, Mechanical stability of retained austenite during plastic deformation of super high strength carbide free bainitic steels. J. Mater. Sci 44 (2009), pp. 4617–4624.
  • M. Cai, H. Ding, Z. Tang, H. Lee, and Y. Lee, Strain hardening behavior of high performance FBDP. TRIP and TWIP Steels, steel Res. Int 82 (2011), pp. 242–248.