390
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comprehensive review on single-atom catalysts in electrochemical hydrogen-evolution reaction: computational modelling and experimental investigation

, , , ORCID Icon &
Article: 2343665 | Received 20 Dec 2023, Accepted 08 Apr 2024, Published online: 23 Apr 2024

References

  • V. Sebestyén, Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants. Renew. Sust. Energ. Rev 151 (2021), pp. 111626.
  • M. Humayun, M. Bououdina, A. Khan, S. Ali, and C. Wang, Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese J Struc Chem 43 (2023), pp. 100193.
  • M. Usman, M.D. Garba, Z. Zeb, M. Israr, S. Safia, F. Javed, M.S. Suliman, B. Alfaify, M.A. Sanhoob, N. Iqbal, M. Humayun, and A. Helal, Co2 conversion via catalytic hydrogenation to methanol, DME and syngas, in Sustainable Utilization of Carbon Dioxide: From Waste to Product, M. Jawaid, A. Khan, eds., Springer Nature Singapore, Singapore, 2023. pp. 37–59.
  • T. Martins, A.C. Barreto, F.M. Souza, and A.M. Souza, Fossil fuels consumption and carbon dioxide emissions in G7 countries: Empirical evidence from ARDL bounds testing approach. Environ. Pollut 291 (2021), pp. 118093.
  • M. Sun, S. Ali, C. Liu, C. Dai, X. Liu, and C. Zeng, Synergistic effect of Fe doping and oxygen vacancy in AgIO3 for effectively degrading organic pollutants under natural sunlight. Environ. Pollut 344 (2024), pp. 123325.
  • S. Ali, P.M. Ismail, M. Humayun, M. Bououdina, and L. Qiao, Tailoring 2D metal-organic frameworks for enhanced CO2 reduction efficiency through modulating conjugated ligands. Fuel Process. Technol. 255 (2024), pp. 108049.
  • A. Suman, Role of renewable energy technologies in climate change adaptation and mitigation: A brief review from Nepal. Renew. Sust. Energ. Rev 151 (2021), pp. 111524.
  • P.A. Owusu, and S. Asumadu-Sarkodie, A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng 3 (2016), pp. 1167990.
  • X. Xu, H. Ullah, M. Humayun, L. Li, X. Zhang, M. Bououdina, D.P. Debecker, K. Huo, D. Wang, and C. Wang, Fluorinated Ni-O-C heterogeneous catalyst for efficient urea-assisted hydrogen production. Adv. Funct. Mater 33 (2023), pp. 2303986.
  • H. Sun, M. Chen, B. Xiao, T. Zhou, M. Humayun, L. Li, Q. Lu, T. He, J. Zhang, M. Bououdina, C. Wang, and Q. Liu, Interface engineering induced electron redistribution at PtNs/NiTe-Ns interfaces for promoting pH-universal and chloride-tolerant hydrogen evolution reaction. Small 19 (2023), pp. 2303974.
  • L. Bao, S. Ali, C. Dai, Q. Zeng, C. Zeng, Y. Jia, X. Liu, P. Wang, X. Ren, T. Yang, M. Bououdina, Z.-H. Lu, Y. Wei, X. Yu, and Y. Zhou, A full-spectrum ZnS photocatalyst with gradient distribution of atomic copper dopants and concomitant sulfur vacancies for highly efficient hydrogen evolution. ACS Nano 18 (2024), pp. 5878–5889.
  • L. Bao, X. Ren, C. Liu, X. Liu, C. Dai, Y. Yang, M. Bououdina, S. Ali, and C. Zeng, Modulating the doping state of transition metal ions in ZnS for enhanced photocatalytic activity. Chem. Commun. 59 (2023), pp. 11280–11283.
  • I. Hussain, Y. Zhang, M. Li, S. Huang, W. Hayat, L. He, X. Du, G. Liu, and M. Du, Heterogeneously degradation of aniline in aqueous solution using persulfate catalyzed by magnetic BiFeO3 nanoparticles. Catal. Today 310 (2018), pp. 130–140.
  • T.Y. Ma, S. Dai, and S.Z. Qiao, Self-supported electrocatalysts for advanced energy conversion processes. Mater. Today 19 (2016), pp. 265–273.
  • P.M. Ismail, S. Ali, S. Ali, J. Li, M. Liu, D. Yan, F. Raziq, F. Wahid, G. Li, S. Yuan, X. Wu, J. Yi, J.S. Chen, Q. Wang, L. Zhong, Y. Yang, P. Xia, and L. Qiao, Photoelectron “bridge” in Van Der Waals heterojunction for enhanced photocatalytic CO2 conversion under visible light. Adv. Mater. 35 (2023), pp. 2303047.
  • L. Wu, Y. Li, B. Zhou, J. Liu, D. Cheng, S. Guo, K. Xu, C. Yuan, M. Wang, G.J. Hong Melvin, J. Ortiz-Medina, S. Ali, T. Yang, Y.A. Kim, and Z. Wang, Vertical graphene on rice-husk-derived SiC/C composite for highly selective photocatalytic CO2 reduction into CO. Carbon. N. Y. 207 (2023), pp. 36–48.
  • S. Ali, P.M. Ismail, F. Wahid, A. Kumar, M. Haneef, F. Raziq, S. Ali, M. Javed, R.U. Khan, X. Wu, H. Xiao, G. Yasin, L. Qiao, and H. Xu, Benchmarking the two-dimensional conductive Y3(C6X6)2 (Y = Co, Cu, Pd, Pt; X = NH, NHS, S) metal-organic framework nanosheets for CO2 reduction reaction with tunable performance. Fuel Process. Technol 236 (2022), pp. 107427.
  • M. Humayun, M. Israr, Z. Li, W. Luo, and C. Wang, Metal oxides confine single atoms toward efficient thermal catalysis. Coord. Chem. Rev. 488 (2023), pp. 215189.
  • M. Humayun, M. Israr, A. Khan, and M. Bououdina, State-of-the-art single-atom catalysts in electrocatalysis: From fundamentals to applications. Nano Energy 113 (2023), pp. 108570.
  • S. Ali, R. Iqbal, A. Khan, S.U. Rehman, M. Haneef, and L. Yin, Stability and catalytic performance of single-atom catalysts supported on doped and defective graphene for CO2 hydrogenation to formic acid: A first-principles study. ACS Appl Nano Mater 4 (2021), pp. 6893–6902.
  • Q. Yang, Y. Jiang, H. Zhuo, E.M. Mitchell, and Q. Yu, Recent progress of metal single-atom catalysts for energy applications. Nano Energy 111 (2023), pp. 108404.
  • S.E. Hosseini, and M.A. Wahid, Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sust. Energ. Rev 57 (2016), pp. 850–866.
  • M. Qin, Y. Li, H. Zhang, M. Humayun, X. Xu, Y. Fu, M.K. Kadirov, and C. Wang, Crystalline/amorphous heterostructure offering highly efficient overall water splitting and urea electrolysis. J. Alloys Compd 921 (2022), pp. 166071.
  • M. Qin, Y. Wang, H. Zhang, M. Humayun, X. Xu, Y. Fu, M.K. Kadirov, and C. Wang, Hierarchical Co(OH)F/CoFe-LDH heterojunction enabling high-performance overall water-splitting. CrystEngComm 24 (2022), pp. 6018–6030.
  • L. Li, H. Sun, X. Xu, M. Humayun, X. Ao, M.F. Yuen, X. Xue, Y. Wu, Y. Yang, and C. Wang, Engineering amorphous/crystalline rod-like core–shell electrocatalysts for overall water splitting. ACS Appl. Mater Interf 14 (2022), pp. 50783–50793.
  • L. Yao, R. Li, H. Zhang, M. Humayun, X. Xu, Y. Fu, A. Nikiforov, and C. Wang, Interface engineering of NiTe@CoFe LDH for highly efficient overall water-splitting. Int. J. Hydrog Energy 47 (2022), pp. 32394–32404.
  • M. Qin, L. Chen, H. Zhang, M. Humayun, Y. Fu, X. Xu, X. Xue, and C. Wang, Achieving highly efficient pH-universal hydrogen evolution by Mott-Schottky heterojunction of Co2P/Co4N. Chem. Eng. J 454 (2023), pp. 140230.
  • W. Chen, J. Pei, C.-T. He, J. Wan, H. Ren, Y. Zhu, Y. Wang, J. Dong, S. Tian, W.-C. Cheong, S. Lu, L. Zheng, X. Zheng, W. Yan, Z. Zhuang, C. Chen, Q. Peng, D. Wang, and Y. Li, Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem. Int. Ed 56 (2017), pp. 16086–16090.
  • H.J. Qiu, Y. Ito, W. Cong, Y. Tan, P. Liu, A. Hirata, T. Fujita, Z. Tang, and M. Chen, Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem. Int. Ed 54 (2015), pp. 14031–14035.
  • B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, and J.K. Nørskov, Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc 127 (2005), pp. 5308–5309.
  • T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, and I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317 (2007), pp. 100–102.
  • P. Aggarwal, D. Sarkar, K. Awasthi, and P.W. Menezes, Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: Current developments and future challenges. Coord. Chem. Rev 452 (2022), pp. 214289.
  • Z. Pu, I.S. Amiinu, R. Cheng, P. Wang, C. Zhang, S. Mu, W. Zhao, F. Su, G. Zhang, S. Liao, and S. Sun, Single-atom catalysts for electrochemical hydrogen evolution reaction: Recent advances and future perspectives. Nano-Micro Lett 12 (2020), pp. 21.
  • F. Ullah, K. Ayub, and T. Mahmood, High performance SACs for HER process using late first-row transition metals anchored on graphyne support: A DFT insight. Int. J. Hydrog Energy 46 (2021), pp. 37814–37823.
  • F. Abdelghafar, X. Xu, S.P. Jiang, and Z. Shao, Designing single-atom catalysts toward improved alkaline hydrogen evolution reaction. Materials Reports: Energy 2 (2022), pp. 100144.
  • V. Fung, G. Hu, Z. Wu, and D.-E. Jiang, Descriptors for hydrogen evolution on single atom catalysts in nitrogen-doped graphene. J. Phys. Chem. C 124 (2020), pp. 19571–19578.
  • S. Tosoni, G.D. Liberto, I. Matanovic, and G. Pacchioni, Modelling single atom catalysts for water splitting and fuel cells: A tutorial review. J. Power Sources 556 (2023), pp. 232492.
  • S. Ali, S. Ali, P.M. Ismail, H. Shen, A. Zada, A. Ali, I. Ahmad, R. Shah, I. Khan, J. Chen, C. Cui, X. Wu, Q. Kong, J. Yi, X. Zu, H. Xiao, F. Raziq, and L. Qiao, Synthesis and bader analyzed cobalt-phthalocyanine modified solar UV-blind β-Ga2O3 quadrilateral nanorods photocatalysts for wide-visible-light driven H2 evolution. Appl. Catal. B 307 (2022), pp. 121149.
  • S. Zhang, Z. Zhang, Y. Si, B. Li, F. Deng, L. Yang, X. Liu, W. Dai, and S. Luo, Gradient hydrogen migration modulated with self-adapting S vacancy in copper-doped ZnIn2S4 nanosheet for photocatalytic hydrogen evolution. ACS Nano 15 (2021), pp. 15238–15248.
  • S. Ali, T. Liu, Z. Lian, B. Li, and D.S. Su, The tunable effect of nitrogen and boron dopants on a single walled carbon nanotube support on the catalytic properties of a single gold atom catalyst: a first principles study of CO oxidation. J. Mater. Chem. A 5 (2017), pp. 16653–16662.
  • S. Trasatti, Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. Interfacial Electrochem 39 (1972), pp. 163–184.
  • G. Di Liberto, L.A. Cipriano, and G. Pacchioni, Role of dihydride and dihydrogen complexes in hydrogen evolution reaction on single-atom catalysts. J. Am. Chem. Soc 143 (2021), pp. 20431–20441.
  • Z. Yu, H. Xu, and D. Cheng, Design of single atom catalysts. Adv. Phys-X 6 (2021), pp. 1905545.
  • G. Di Liberto, and G. Pacchioni, Modeling single-atom catalysis. Adv. Mater 35 (2023), pp. 2307150.
  • F. Wahid, S. Ali, P.M. Ismail, F. Raziq, S. Ali, J. Yi, and L. Qiao, Metal single atom doped 2D materials for photocatalysis: current status and future perspectives. Prog. Energy 5 (2023), pp. 012001.
  • S. Ali, T. Fu Liu, Z. Lian, B. Li, and D. Sheng Su, The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation. Phys. Chem. Chem. Phys 19 (2017), pp. 22344–22354.
  • S. Ali, Z. Xie, and H. Xu, Stability and catalytic performance of single-atom supported on Ti2CO2 for low-temperature CO oxidation: A first-principles study. ChemPhysChem 22 (2021), pp. 2352–2361.
  • S. Ali, Z. Lian, and B. Li, Density functional theory study of a graphdiyne-supported single Au atom catalyst for highly efficient acetylene hydrochlorination. ACS Appl Nano Mater 4 (2021), pp. 6152–6159.
  • S. Ali, M. Haneef, J. Akbar, I. Ullah, S. Ullah, and A. Samad, Single Au atom supported defect mediated boron nitride monolayer as an efficient catalyst for acetylene hydrochlorination: A first principles study. Mol. Catal 511 (2021), pp. 111753.
  • P.M. Ismail, S. Ali, F. Raziq, M. Bououdina, H. Abu-Farsakh, P. Xia, X. Wu, H. Xiao, S. Ali, and L. Qiao, Stable and robust single transition metal atom catalyst for CO2 reduction supported on defective WS2. Appl. Surf. Sci 624 (2023), pp. 157073.
  • S. Ali, S. Olanrele, T. Liu, Z. Lian, C. Si, M. Yang, and B. Li, Single Au anion can catalyze acetylene hydrochlorination: Tunable catalytic performance from rational doping. J. Phys. Chem. C 123 (2019), pp. 29203–29208.
  • S. Ali, G. Yasin, R. Iqbal, X. Huang, J. Su, S. Ibraheem, Z. Zhang, X. Wu, F. Wahid, P.M. Ismail, L. Qiao, and H. Xu, Porous aza-doped graphene-analogous 2D material a unique catalyst for CO2 conversion to formic-acid by hydrogenation and electroreduction approaches. Mol. Catal 524 (2022), pp. 112285.
  • S. Ali, T. Liu, Z. Lian, D. Sheng Su, and B. Li, The stability and reactivity of transition metal atoms supported mono and di vacancies defected carbon based materials revealed from first principles study. Appl. Surf. Sci 473 (2019), pp. 777–784.
  • B. Huang, Z. Wu, H. Zhou, J. Li, C. Zhou, Z. Xiong, Z. Pan, G. Yao, and B. Lai, Recent advances in single-atom catalysts for advanced oxidation processes in water purification. J. Hazard. Mater 412 (2021), pp. 125253.
  • J.E. Bercaw, Jack Halpern (1925–2018): Pioneer of homogeneous catalysis. Proc. Natl. Acad. Sci. U.S.A. 115 (2018), pp. 5049–5050.
  • Y. Tang, C. Asokan, M. Xu, G.W. Graham, X. Pan, P. Christopher, J. Li, and P. Sautet, Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site. Nature Commun 10 (2019), pp. 4488.
  • M. Tamtaji, H. Gao, M.D. Hossain, P.R. Galligan, H. Wong, Z. Liu, H. Liu, Y. Cai, W.A. Goddard, and Z. Luo, Machine learning for design principles for single atom catalysts towards electrochemical reactions. J. Mater. Chem. A 10 (2022), pp. 15309–15331.
  • S. Ali, R. Iqbal, F. Wahid, P.M. Ismail, A. Saleem, S. Ali, F. Raziq, S. Ullah, I. Ullah, M. Zahoor, and X. Wu, Cobalt coordinated two-dimensional covalent organic framework a sustainable and robust electrocatalyst for selective CO2 electrochemical conversion to formic acid. Fuel Process. Technol 237 (2022), pp. 107451.
  • K. McCardle, Theoretical insights into single-atom catalysts. Nat. Comput. Sci 2 (2022), pp. 138–138.
  • N. Karmodak, S. Vijay, G. Kastlunger, and K. Chan, Computational screening of single and di-atom catalysts for electrochemical CO2 reduction. ACS Catal. 12 (2022), pp. 4818–4824.
  • J. Fang, Q. Chen, Z. Li, J. Mao, and Y. Li, The synthesis of single-atom catalysts for heterogeneous catalysis. Chem. Commun 59 (2023), pp. 2854–2868.
  • N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T.-K. Sham, L.-M. Liu, G.A. Botton, and X. Sun, Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun 7 (2016), pp. 13638.
  • X. Wang, Y. Zheng, W. Sheng, Z.J. Xu, M. Jaroniec, and S.-Z. Qiao, Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater. Today 36 (2020), pp. 125–138.
  • Y. Shi, Z.-R. Ma, Y.-Y. Xiao, Y.-C. Yin, W.-M. Huang, Z.-C. Huang, Y.-Z. Zheng, F.-Y. Mu, R. Huang, G.-Y. Shi, Y.-Y. Sun, X.-H. Xia, and W. Chen, Electronic metal–support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun 12 (2021), pp. 3021.
  • P. Tang, P.-Y. Huang, J.E.N. Swallow, C. Wang, D. Gianolio, H. Guo, J.H. Warner, R.S. Weatherup, and M. Pasta, Structure–property relationship of defect-trapped Pt single-site electrocatalysts for the hydrogen evolution reaction. ACS Catal. 13 (2023), pp. 9558–9566.
  • X.-P. Yin, H.-J. Wang, S.-F. Tang, X.-L. Lu, M. Shu, R. Si, and T.-B. Lu, Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed 57 (2018), pp. 9382–9386.
  • D. Wang, H. Li, N. Du, and W. Hou, Single platinum atoms immobilized on monolayer tungsten trioxide nanosheets as an efficient electrocatalyst for hydrogen evolution reaction. Adv. Funct. Mater 31 (2021), pp. 2009770.
  • R. Cheng, Y. Min, H. Li, and C. Fu, Electronic structure regulation in the design of low-cost efficient electrocatalysts: From theory to applications. Nano Energy 115 (2023), pp. 108718.
  • L. Xiong, Y. Qiu, X. Peng, Z. Liu, and P.K. Chu, Electronic structural engineering of transition metal-based electrocatalysts for the hydrogen evolution reaction. Nano Energy 104 (2022), pp. 107882.
  • Y. Lou, and J. Liu, CO oxidation on metal oxide supported single Pt atoms: The role of the support. Ind. Eng. Chem. Res 56 (2017), pp. 6916–6925.
  • L. Liu, T. Chen, and Z. Chen, Understanding the dynamic aggregation in single-atom catalysis. Adv. Sci (2024), pp. 2308046.
  • X. Zheng, P. Li, S. Dou, W. Sun, H. Pan, D. Wang, and Y. Li, Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy Environ. Sci 14 (2021), pp. 2809–2858.
  • K. Qi, M. Chhowalla, and D. Voiry, Single atom is not alone: Metal–support interactions in single-atom catalysis. Mater. Today 40 (2020), pp. 173–192.
  • B.C. Gates, M. Flytzani-Stephanopoulos, D.A. Dixon, and A. Katz, Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catal. Sci. Technol 7 (2017), pp. 4259–4275.
  • D. Liu, Q. He, S. Ding, and L. Song, Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis. Adv. Energy Mater 10 (2020), pp. 2001482.
  • Y. Zhang, J. Yang, R. Ge, J. Zhang, J.M. Cairney, Y. Li, M. Zhu, S. Li, and W. Li, The effect of coordination environment on the activity and selectivity of single-atom catalysts. Coord. Chem. Rev 461 (2022), pp. 214493.
  • J. Herranz, J. Durst, E. Fabbri, A. Patru, X. Cheng, A.A. Permyakova, and T.J. Schmidt, Interfacial effects on the catalysis of the hydrogen evolution, oxygen evolution and CO2-reduction reactions for (co-)electrolyzer development. Nano Energy 29 (2016), pp. 4–28.
  • Y. Wang, Z. Chen, P. Han, Y. Du, Z. Gu, X. Xu, and G. Zheng, Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 8 (2018), pp. 7113–7119.
  • J. Li, C. Chen, L. Xu, Y. Zhang, W. Wei, E. Zhao, Y. Wu, and C. Chen, Challenges and perspectives of single-atom-based catalysts for electrochemical reactions. JACS Au 3 (2023), pp. 736–755.