2,823
Views
116
CrossRef citations to date
0
Altmetric
FULL CRITICAL REVIEW

Three-dimensional nanoscale characterisation of materials by atom probe tomography

, , , , , , ORCID Icon, , ORCID Icon, & show all
Pages 68-101 | Received 24 Mar 2016, Accepted 27 Oct 2016, Published online: 26 Jan 2017

References

  • Muller EW, Panitz JA, Mclane SB. Atom-probe field ion microscope. Rev Sci Instrum. 1968;39(1):83–86. doi: 10.1063/1.1683116
  • Kelly TF, Miller MK. Invited review article: atom probe tomography. Rev Sci Instrum. 2007;78(3):031101. doi: 10.1063/1.2709758
  • Kelly TF, Larson DJ. The second revolution in atom probe tomography. MRS Bull. 2012;37(2):150–158. doi: 10.1557/mrs.2012.3
  • Panitz JA. Imaging atom-probe mass-spectroscopy. Prog Surf Sci. 1978;8(6):219–262. doi: 10.1016/0079-6816(78)90002-3
  • Kellogg GL, Tsong TT. Pulsed laser-induced atom-probe mass-spectroscopy. Ultramicroscopy. 1980;5(2):259–260.
  • Kellogg GL. Pulsed laser atom-probe study of the dissociation of CO on Molybdenum. Surf Sci. 1981;111(2):205–213. doi: 10.1016/0039-6028(80)90705-0
  • Kellogg GL. Field-ion microscopy and pulsed laser atom-probe mass-spectroscopy of insulating glasses. J Appl Phys. 1982;53(9):6383–6386. doi: 10.1063/1.331509
  • Kingham DR. The post-ionization of field evaporated ions – a theoretical explanation of multiple charge states. Surf Sci. 1982;116(2):273–301. doi: 10.1016/0039-6028(82)90434-4
  • Kellogg GL. Pulsed-laser atom probe mass-spectroscopy. J Phys E Sci Instrum. 1987;20(2):125–136. doi: 10.1088/0022-3735/20/2/002
  • Kellogg GL, Brenner SS. Field-ion microscopy and imaging atom-probe mass-spectroscopy of superconducting Yba2cu3o7-X. Appl Phys Lett. 1987;51(22):1851–1853. doi: 10.1063/1.98491
  • Kellogg GL. Filed ion microscopy and atom-probe mass-spectroscopy – techniques and selected applications. Scanning Microsc. 1988;2(4):1845–1852.
  • Kellogg GL, Brenner SS. Investigations of superconducting and non-superconducting Yba2cu3o7-X by field-ion microscopy, atom-probe mass-spectroscopy and field electron-emission. J Phys-Paris. 1988;49(C-6):465–470.
  • Bunton JH, Olson JD, Lenz DR, et al. Optimized laser thermal pulsing of atom probe tomography: LEAP 4000X. Microsc Microanal. 2010;16(S2):10–11. doi: 10.1017/S1431927610060241
  • Kelly TE, Gribb TT, Olson JD, et al. First data from a commercial local electrode atom probe (LEAP). Microsc Microanal. 2004;10(3):373–383. doi: 10.1017/S1431927604040565
  • Tsong TT. Field-ion image-formation. Surf Sci. 1978;70(1):211–233. doi: 10.1016/0039-6028(78)90410-7
  • Kellogg GL, Tsong TT. Pulsed-laser atom-probe field-ion microscopy. J Appl Phys. 1980;51(2):1184–1193. doi: 10.1063/1.327686
  • Hono K. Nanoscale microstructural analysis of metallic materials by atom probe field ion microscopy. Prog Mat Sci. 2002;47(6):621–729. doi: 10.1016/S0079-6425(01)00007-X
  • Schlesiger R, Oberdorfer C, Wurz R, et al. Design of a laser-assisted tomographic atom probe at Muumlnster University. Rev Sci Instrum. 2010;81(4):043705. doi: 10.1063/1.3378674
  • Gault B, Vurpillot F, Vella A, et al. Design of a femtosecond laser assisted tomographic atom probe. Rev Sci Instrum. 2006;77(4). doi: 10.1063/1.2194089
  • Müller EW, Krishnaswamy SV. Energy deficits in pulsed field evaporation and deficit compensated atom-probe designs. Rev Sci Instrum. 1974;45(9):1053–1059. doi: 10.1063/1.1686808
  • Waugh AR, Richardson CH, Jenkins R. Apfim-200 – a reflectron-based atom probe. Surf Sci. 1992;266(1–3):501–505. doi: 10.1016/0039-6028(92)91066-K
  • Cerezo A, Godfrey TJ, Sijbrandij SJ, et al. Performance of an energy-compensated three-dimensional atom probe. Rev Sci Instrum. 1998;69(1):49–58. doi: 10.1063/1.1148477
  • Jagutzki O, Cerezo A, Czasch A, et al. Multiple hit readout of a microchannel plate detector with a three-layer delay-line anode. IEEE T Nucl Sci. 2002;49(5):2477–2483. doi: 10.1109/TNS.2002.803889
  • Miller MK. Atom probe tomography: analysis at the atomic level. New York: Kluwer Academic/Plenum Publishers; 2000.
  • Gault B, Moody MP, Cairney JM, et al. Atom probe microscopy. XIII + 372. New York (NY): Springer-Verlag; 2012.
  • Larson DJ, Foord DT, Petford-Long AK, et al. Field-ion specimen preparation using focused ion-beam milling. Ultramicroscopy. 1999;79(1–4):287–293. doi: 10.1016/S0304-3991(99)00055-8
  • Thompson K, Lawrence D, Larson DJ, et al. In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy. 2007;107(2–3):131–139. doi: 10.1016/j.ultramic.2006.06.008
  • Thompson K, Gorman B, Larson D, et al. Minimization of Ga induced FIB damage using low energy clean-up. Microsc Microanal. 2006;12(Supplement S02):1736–1737. doi: 10.1017/S1431927606065457
  • Madaan N, Bao J, Nandasiri M, et al. Impact of dynamic specimen shape evolution on the atom probe tomography results of doped epitaxial oxide multilayers: comparison of experiment and simulation. Appl Phys Lett. 2015;107(9):091601. doi: 10.1063/1.4929705
  • Devaraj A, Szymanski C, Yan P, et al. Nanoscale characterization of Li-ion battery cathode nanoparticles by atom probe tomography correlated with transmission electron microscopy and scanning transmission X-Ray microscopy. Microsc Microanal. 2015;21(Supplement S3):685–686. doi: 10.1017/S1431927615004225
  • Larson DJ, Giddings AD, Wu Y, et al. Encapsulation method for atom probe tomography analysis of nanoparticles. Ultramicroscopy. 2015;159(2):420–426. doi: 10.1016/j.ultramic.2015.02.014
  • Li T, Bagot PAJ, Christian E, et al. Atomic imaging of carbon-supported Pt, Pt/Co, and Ir@Pt nanocatalysts by atom-probe tomography. Acs Catal. 2014;4(2):695–702. doi: 10.1021/cs401117e
  • Felfer P, Li T, Eder K, et al. New approaches to nanoparticle sample fabrication for atom probe tomography. Ultramicroscopy. 2015;159(2):413–419. doi: 10.1016/j.ultramic.2015.04.014
  • Fasth JE, Loberg B, Norden H. Preparation of contamination-free Tungsten specimens for field-ion microscope. J Sci Instrum. 1967;44(12):1044. doi: 10.1088/0950-7671/44/12/428
  • Norden H, Bowkett KM. Electron microscope holders for viewing thin wire specimens and field-ion microscope tips. J Sci Instrum. 1967;44(3);238–240. doi: 10.1088/0950-7671/44/3/423
  • Henjered A, Norden H. A controlled specimen preparation technique for interface studies with atom-probe field-ion microscopy. J Phys E-Sci Instrum. 1983;16(7):617–619. doi: 10.1088/0022-3735/16/7/014
  • Krakauer BW, Seidman DN. Systematic procedures for atom-probe field-ion microscopy studies of grain-boundary segregation. Rev Sci Instrum. 1992;63(9):4071–4079. doi: 10.1063/1.1143214
  • Arslan I, Marquis EA, Homer M, et al. Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography. Ultramicroscopy. 2008;108(12):1579–1585. doi: 10.1016/j.ultramic.2008.05.008
  • Gorman BP, Diericks D, Salmon N, et al. Hardware and techniques for correlative TEM and atom probe analysis. Microscopy Today. 2008;16(4):42–48.
  • Bennett SE, Saxey DW, Kappers MJ, et al. Atom probe tomography assessment of the impact of electron beam exposure on InxGa1-xN/GaN quantum wells. Appl Phys Lett. 2011;99(2):021906. doi: 10.1063/1.3610468
  • Felfer PJ, Alam T, Ringer SP, et al. A reproducible method for damage-free site-specific preparation of atom probe tips from interfaces. Microsc Res Techniq. 2012;75(4):484–491. doi: 10.1002/jemt.21081
  • Herbig M, Choi P, Raabe D. Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography. Ultramicroscopy. 2015;153:32–39. doi: 10.1016/j.ultramic.2015.02.003
  • Wagner RS, Ellis WC. Vapor-liquid-solid mechanism of single crystal growth (new method growth catalysis from impurity whisker epitaxial + large crystals SIE). Appl Phys Lett. 1964;4(5), 89. doi: 10.1063/1.1753975
  • Lauhon LJ, Gudiksen MS, Lieber CM. Semiconductor nanowire heterostructures. Philos T Roy Soc A. 2004;362(1819):1247–1260. doi: 10.1098/rsta.2004.1377
  • Perea DE, Allen JE, May SJ, et al. Three-dimensional nanoscale composition mapping of semiconductor nanowires. Nano Lett. 2006;6(2):181–185. doi: 10.1021/nl051602p
  • Perea DE, Lensch JL, May SJ, et al. Composition analysis of single semiconductor nanowires using pulsed-laser atom probe tomography. Appl Phys A-Mater. 2006;85(3):271–275. doi: 10.1007/s00339-006-3710-1
  • Perea DE, Wijaya E, Lensch-Falk JL, et al. Tomographic analysis of dilute impurities in semiconductor nanostructures. J Solid State Chem. 2008;181(7):1642–1649. doi: 10.1016/j.jssc.2008.06.007
  • Xu T, Nys JP, Grandidier B, et al. Growth of Si nanowires on micropillars for the study of their dopant distribution by atom probe tomography. J Vac Sci Technol B. 2008;26(6):1960–1963. doi: 10.1116/1.3021371
  • Diercks DR, Gorman BP, Cheung CL, et al. Techniques for consecutive TEM and atom probe tomography analysis of nanowires. Microsc Microanal. 2009;15(S2):254–255. doi: 10.1017/S1431927609093398
  • Blumtritt H, Isheim D, Senz S, et al. Preparation of nanowire specimens for laser-assisted atom probe tomography. Nanotechnology. 2014;25(43):435704. doi: 10.1088/0957-4484/25/43/435704
  • Padalkar S, Riley JR, Li QM, et al. Lift-out procedures for atom probe tomography targeting nanoscale features in core-shell nanowire heterostructures. Phys Status Solidi C. 2014;11(3–4):656–661. doi: 10.1002/pssc.201300489
  • Prosa TJ, Alvis R, Tsakalakos L, et al. Characterization of dilute species within CVD-grown silicon nanowires doped using trimethylboron: protected lift-out specimen preparation for atom probe tomography. J Microsc-Oxford. 2010;239(2):92–98.
  • Dawahre N, Shen G, Balci S, et al. Atom probe tomography of Zinc oxide nanowires. J Electron Mater. 2012;41(5):801–808. doi: 10.1007/s11664-011-1803-x
  • Mangelinck D, Panciera F, Hoummada K, et al. Atom probe tomography for advanced metallization. Microelectron Eng. 2014;120:19–33. doi: 10.1016/j.mee.2013.12.018
  • Larson DJ, Prosa TJ, Ulfig RM, et al. Local electrode atom probe tomography: a user's guide. New York: Springer; 2013.
  • Miller MK, Smith GDW. An atom probe study of the anomalous field evaporation of alloys containing Silicon. J Vac Sci Technol. 1981;19:57–62. doi: 10.1116/1.571017
  • Miller MK, Russell KF. Performance of a local electrode atom probe. Surf Interf Anal. 2007;39:262–267. doi: 10.1002/sia.2488
  • Yamaguchi Y, Takahashi J, Kawakami K. The study of quantitativeness in atom probe analysis of alloying elements in steel. Ultramicroscopy. 2009;109:541–544. doi: 10.1016/j.ultramic.2008.11.017
  • Zhou Y, Booth-Morrison C, Seidman DN. On the field evaporation behavior of a model Ni-Al-Cr superalloy studied by picosecond pulsed-laser atom-probe tomography. Microsc Microanal. 2008;14:571–580. doi: 10.1017/S1431927608080963
  • Tang F, Gault B, Ringer SP, et al. Optimization of pulsed laser atom probe (PLAP) for the analysis of nanocomposite Ti–Si–N films. Ultramicroscopy. 2010;110:836–843. doi: 10.1016/j.ultramic.2010.03.003
  • Tu Y, Plotnikov EY, Seidman DN. A model Ni–Al–Mo superalloy studied by ultraviolet pulsed-laser-assisted local-electrode atom-probe tomography. Microsc Microanal. 2015;21:480–490. doi: 10.1017/S1431927615000124
  • Valderrama B, Henderson HB, Gan J, et al. Influence of instrument conditions on the evaporation behavior of uranium dioxide with UV laser-assisted atom probe tomography. J Nucl Mater. 2015;459:37–43. doi: 10.1016/j.jnucmat.2014.12.119
  • Diercks DR, Gorman BP. Nanoscale measurement of laser-induced temperature rise and field evaporation effects in CdTe and GaN. J Phys Chem C. 2015;119:20623–20631. doi: 10.1021/acs.jpcc.5b02126
  • Thuvander M, Weidow J, Angseryd J, et al. Quantitative atom probe analysis of carbides. Ultramicroscopy. 2011;111:604–608. doi: 10.1016/j.ultramic.2010.12.024
  • Meisenkothen F, Steel EB, Prosa TJ, et al. Effects of detector dead-time on quantitative analyses involving boron and multi-hit detection events in atom probe tomography. Ultramicroscopy. 2015;159(Part 1):101–111. doi: 10.1016/j.ultramic.2015.07.009
  • Stephan T, Heck PR, Isheim D, et al. Correction of dead time effects in laser-induced desorption time-of-flight mass spectrometry: applications in atom probe tomography. Int J Mass Spectrom. 2015;379:46–51.
  • Müller M, Smith GDW, Gault B, et al. Compositional nonuniformities in pulsed laser atom probe tomography analysis of compound semiconductors. J Appl Phys. 2012;111:064908. doi: 10.1063/1.3695461
  • Kelly TF. Kinetic-energy discrimination for atom probe tomography. Micros. Microanal. 2011;17:1–14. doi: 10.1017/S1431927610094468
  • Saxey DW. Correlated ion analysis and the interpretation of atom probe mass spectra. Ultramicroscopy. 2011;111:473–479. doi: 10.1016/j.ultramic.2010.11.021
  • Vurpillot F, Da Costa G, Menand A, et al. Structural analyses in three-dimensional atom probe: a Fourier transform approach. J Microsc-Oxford. 2001;203:295–302. doi: 10.1046/j.1365-2818.2001.00923.x
  • Geiser BP, Kelly TF, Larson DJ, et al. Spatial distribution maps for atom probe tomography. Microsc Microanal. 2007;13(6):437–447. doi: 10.1017/S1431927607070948
  • Birdseye PJ, Smith DA. The electric field and the stress on a field-ion specimen. Surf Sci. 1970;23:198–210. doi: 10.1016/0039-6028(70)90013-0
  • Mikhailovskij IM, Wanderka N, Storizhko VE, et al. A new approach for explanation of specimen rupture under high electric field. Ultramicroscopy. 2009;109:480–485. doi: 10.1016/j.ultramic.2008.12.003
  • Hono K, Ohkubo T, Chen YM, et al. Broandening the applications of the atom probe technique by ultraviolet femtosecond laser. Ultramicroscopy. 2011;111:576–583. doi: 10.1016/j.ultramic.2010.11.020
  • Kirchhofer R, Teague MC, Gorman BP. Thermal effects on mass and spatial resolution during laser pulse atom probe tomography of cerium oxide. J Nucl Mater. 2013;436:23–28. doi: 10.1016/j.jnucmat.2012.12.052
  • Kolli RP, Seidman DN. Co-precipitated and collocated carbides and Cu-rich precipitates in a Fe–Cu steel characterized by atom-probe tomography. Microsc Microanal. 2014;20:1727–1739. doi: 10.1017/S1431927614013221
  • Bunton JH, Olson JD, Lenz D, et al. Advances in pulsed-laser atom probe: instrument and specimen design for optimum performance. Microsc Microanal. 2007;13:418–427. doi: 10.1017/S1431927607070869
  • Houard J, Vella A, Vurpillot F, et al. Conditions to cancel the laser polarization dependence of a subwavelength tip. Appl Phys Lett. 2009;94:121905. doi: 10.1063/1.3095829
  • Gault B, Danoix F, Hoummada K, et al. Impact of directional walk on atom probe microanalysis. Ultramicroscopy. 2012;113:182–191. doi: 10.1016/j.ultramic.2011.06.005
  • Vella A. On the interaction of an ultra-fast laser with a nanometric tip by laser assisted atom probe tomography: A review. Ultramicroscopy. 2013;132:5–18. doi: 10.1016/j.ultramic.2013.05.016
  • Prosa TJ, Lawrence D, Olson D, et al. Experimental evaluation of conditions affecting specimen survivability. Microsc Microanal. 2015;21:849–850. doi: 10.1017/S1431927615005048
  • Discussion: ‘LEAP User's Meeting’, Cameca LEAP User's Meeting, June, 2015, 2015.
  • Prosa TJ, Lenz DR, Payne TR, et al. ‘Novel Evaporation Control Concepts’, Frontiers of Characterization and Metrology for Nanoelectronics, 2013 Mar 25–28; 2013. p. 269–272.
  • Bas P, Bostel A, Deconihout B, et al. A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci. 1995;87–88:298–304. doi: 10.1016/0169-4332(94)00561-3
  • Geiser BP, Larson DJ, Oltman E, et al. Wide-field-of-view atom probe reconstruction. Microsc Microanal. 2009;15(S2):292–293. doi: 10.1017/S1431927609098249
  • Martin AJ, Weng W, Zhu Z, et al. Cross-sectional atom probe tomography sample preparation for improved analysis of fins on SOI. Ultramicroscopy. 2016;161:105–109. doi: 10.1016/j.ultramic.2015.11.013
  • Vurpillot F, Gault B, Geiser BP, et al. Reconstructing atom probe data: a review. Ultramicroscopy. 2013;132:19–30. doi: 10.1016/j.ultramic.2013.03.010
  • Gault B, Haley D, de Geuser F, et al. Advances in the reconstruction of atom probe tomography data. Ultramicroscopy. 2011;111:448–457. doi: 10.1016/j.ultramic.2010.11.016
  • Miller MK, Forbes RG. Atom-probe tomography: the local electrode atom probe. 423. New York (NY): Springer; 2014.
  • Larson DJ, Gault B, Geiser BP, et al. Atom probe tomography spatial reconstruction: status and directions. Curr Opin Solid St M. 2013;17(5):236–247. doi: 10.1016/j.cossms.2013.09.002
  • Moody MP, Gault B, Stephenson LT, et al. Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. Ultramicroscopy. 2009;109:815–824. doi: 10.1016/j.ultramic.2009.03.016
  • Stephenson LT, Moody MP, Liddicoat PV, et al. New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data. Microsc Microanal. 2007;13:448–463. doi: 10.1017/S1431927607070900
  • Vurpillot F, Larson D, Cerezo A. Improvement of multilayer analyses with a three-dimensional atom probe. Surf Interf Anal. 2004;36:552–558. doi: 10.1002/sia.1697
  • Vurpillot F, Gruber M, Da Costa G, et al. Pragmatic reconstruction methods in atom probe tomography. Ultramicroscopy. 2011;111:1286–1294. doi: 10.1016/j.ultramic.2011.04.001
  • De Geuser F, Lefebvre W, Danoix F, et al. An improved reconstruction procedure for the correction of local magnification effects in three-dimensional atom-probe. Surf Interf Anal. 2007;39:268–272. doi: 10.1002/sia.2489
  • Larson DJ, Geiser BP, Prosa TJ, et al. On the use of simulated field-evaporated specimen apex shapes in atom probe tomography data reconstruction. Microsc Microanal. 2012;18:953–963. doi: 10.1017/S1431927612001523
  • Moody MP, Gault B, Stephenson LT, et al. Lattice rectification in atom probe tomography: toward true three-dimensional atomic microscopy. Microsc Microanal. 2011;17:226–239. doi: 10.1017/S1431927610094535
  • Hyde JM, Cerezo A, Setna RP, et al. Lateral and depth scale calibration of the position sensitive atom probe. Appl Surf Sci. 1994;76-77:382–391. doi: 10.1016/0169-4332(94)90371-9
  • Gault B, de Geuser F, Stephenson LT, et al. Estimation of the reconstruction parameters for atom probe tomography. Microsc Microanal. 2008;14:296–305. doi: 10.1017/S1431927608080690
  • Prosa TJ, Olson D, Geiser B, et al. Analysis of implanted silicon dopant profiles. Ultramicroscopy. 2013;132:179–185. doi: 10.1016/j.ultramic.2012.10.005
  • Prosa TJ, Geiser BP, Reinhard D, et al. Approaches for promoting accurate atom probe reconstructions. Microsc. Microanal. 2016;22(S3):664–665. doi: 10.1017/S1431927616004177
  • Gorman BP, Puthucode A, Diercks DR, et al. Cross-correlative TEM and atom probe analysis of partial crystallisation in NiNbSn metallic glasses. Mater Sci Technol. 2008;24:682–688. doi: 10.1179/174328408X293595
  • Shariq A, Mutas S, Wedderhoff K, et al. Investigations of field-evaporated end forms in voltage- and laser-pulsed atom probe tomography. Ultramicroscopy. 2009;109:472–479. doi: 10.1016/j.ultramic.2008.10.001
  • Rolland N, Larson DJ, Geiser BP, et al. An analytical model accounting for tip shape evolution during atom probe analysis of heterogeneous materials. Ultramicroscopy. 2015;159:195–201. doi: 10.1016/j.ultramic.2015.03.010
  • Gault B, Loi SH, Araullo-Peters V, et al. Dynamic reconstruction for atom probe tomography. Ultramicroscopy. 2011;111:1619–1624. doi: 10.1016/j.ultramic.2011.08.005
  • Haley D, Petersen T, Ringer SP, et al. Atom probe trajectory mapping using experimental tip shape measurements. J Microsc-Oxford. 2011;244:170–180. doi: 10.1111/j.1365-2818.2011.03522.x
  • Petersen TC, Ringer SP. An electron tomography algorithm for reconstructing 3D morphology using surface tangents of projected scattering interfaces. Comput Phys Commun. 2010;181:676. doi: 10.1016/j.cpc.2009.10.023
  • Larson DJ, Geiser BP, Prosa TJ, et al. Improvements in planar feature reconstructions in atom probe tomography. J Microsc-Oxford. 2011;243:15. doi: 10.1111/j.1365-2818.2010.03474.x
  • Devaraj A, Colby R, Vurpillot F, et al. Understanding atom probe tomography of oxide-supported metal nanoparticles by correlation with atomic-resolution electron microscopy and field evaporation simulation. J Phys Chem Lett. 2014;5(8):1361–1367. doi: 10.1021/jz500259c
  • Papazian JM. The preparation of field-ion-microscope specimens containing grain boundaries. J Microsc-Oxford. 1971;94(1):63–67. doi: 10.1111/j.1365-2818.1971.tb02361.x
  • Devaraj A, Colby R, Hess WP, et al. Role of photoexcitation and field ionization in the measurement of accurate oxide stoichiometry by laser-assisted atom probe tomography. J Phys Chem Lett. 2013;4(6):993–998. doi: 10.1021/jz400015h
  • Devaraj A, Nag S, Banerjee R. Alpha phase precipitation from phase-separated beta phase in a model Ti-Mo-Al alloy studied by direct coupling of transmission electron microscopy and atom probe tomography. Scripta Mater. 2013;69(7):513–516. doi: 10.1016/j.scriptamat.2013.06.011
  • Kuzmina M, Herbig M, Ponge D, et al. Linear complexions: confined chemical and structural states at dislocations. Science. 2015;349(6252):1080–1083. doi: 10.1126/science.aab2633
  • Hartshorne MI, Isheim D, Seidman DN, et al. Specimen preparation for correlating transmission electron microscopy and atom probe tomography of mesoscale features. Ultramicroscopy. 2014;147:25–32. doi: 10.1016/j.ultramic.2014.05.005
  • Williams CA, Marquis EA, Cerezo A, et al. Nanoscale characterisation of ODS–Eurofer 97 steel: an atom-probe tomography study. J Nucl Mater. 2010;400(1):37–45. doi: 10.1016/j.jnucmat.2010.02.007
  • Diercks DR, Gorman BP, Manerbino A, et al. Atom probe tomography of Yttrium-Doped Barium–Cerium–Zirconium Oxide with NiO addition. J Am Ceram Soc. 2014;97(10):3301–3306. doi: 10.1111/jace.13093
  • Schreiber DK, Olszta MJ, Bruemmer SM. Directly correlated transmission electron microscopy and atom probe tomography of grain boundary oxidation in a Ni–Al binary alloy exposed to high-temperature water. Scripta Mater. 2013;69(7):509–512. doi: 10.1016/j.scriptamat.2013.06.008
  • Baik SI, Yin X, Seidman DN. Correlative atom-probe tomography and transmission electron microscope study of a chemical transition in a spinel on an oxidized nickel-based superalloy. Scripta Mater. 2013;68(11):909–912. doi: 10.1016/j.scriptamat.2013.02.025
  • Lee JH, Lee BH, Kim YT, et al. Study of vertical Si/SiO2 interface using laser-assisted atom probe tomography and transmission electron microscopy. Micron. 2014;58:32–37. doi: 10.1016/j.micron.2013.11.003
  • Herbig M, Raabe D, Li YJ, et al. Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys Rev Lett. 2014;112(12):245701. doi: 10.1103/PhysRevLett.112.126103
  • Stoffers A, Cojocaru-Mirédin O, Seifert W, et al. Grain boundary segregation in multicrystalline silicon: correlative characterization by EBSD, EBIC, and atom probe tomography. Prog Photovoltaics Res Appl. 2015;23:1742–1753.
  • Nag S, Devaraj A, Srinivasan R, et al. Novel mixed-mode phase transition involving a composition-dependent displacive component. Phys Rev Lett. 2011;106(24). doi: 10.1103/PhysRevLett.106.245701
  • Ng HP, Nandwana P, Devaraj A, et al. Conjugated precipitation of twin-related α and Ti2Cu phases in a Ti–25V–3Cu alloy. Acta Materialia. 2015;84:457–471. doi: 10.1016/j.actamat.2014.10.053
  • Devaraj A, Joshi VV, Srivastava A, et al. A low-cost hierarchical nanostructured beta-titanium alloy with high strength. Nat Commun. 2016 ;7:11176.
  • Devaraj A, Nag S, Srinivasan R, et al. Experimental evidence of concurrent compositional and structural instabilities leading to omega precipitation in titanium-molybdenum alloys. Acta Materialia. 2012;60(2):596–609. doi: 10.1016/j.actamat.2011.10.008
  • Ng HP, Devaraj A, Nag S, et al. Phase separation and formation of omega phase in the beta matrix of a Ti–V–Cu alloy. Acta Materialia. 2011;59(8):2981–2991. doi: 10.1016/j.actamat.2011.01.038
  • Kolli RP, Herzing AA, Ankem S. Characterization of yttrium-rich precipitates in a titanium alloy weld. Mater Charact. 2016;122:30–35. doi: 10.1016/j.matchar.2016.10.014
  • Yang F, Coughlin DR, Phillips PJ, et al. Structure analysis of a precipitate phase in an Ni-rich high-temperature NiTiHf shape memory alloy. Acta Mater. 2013;61(9):3335–3346. doi: 10.1016/j.actamat.2013.02.023
  • Mao Z, Sudbrack CK, Yoon KE, et al. The mechanism of morphogenesis in a phase-separating concentrated multicomponent alloy. Nat Mater. 2007;6(3):210–216. doi: 10.1038/nmat1845
  • Sudbrack CK, Noebe RD, Seidman DN. Compositional pathways and capillary effects during isothermal precipitation in a nondilute Ni-Al-Cr alloy. Acta Materialia. 2007;55(1):119–130. doi: 10.1016/j.actamat.2006.08.009
  • Sudbrack CK, Yoon KE, Noebe RD, et al. Temporal evolution of the nanostructure and phase compositions in a model Ni-Al-Cr alloy. Acta Materialia. 2006;54(12):3199–3210. doi: 10.1016/j.actamat.2006.03.015
  • Kolli RP, Seidman DN. The temporal evolution of the decomposition of a concentrated multicomponent Fe-Cu-based steel. Acta Materialia. 2008;56(9):2073–2088. doi: 10.1016/j.actamat.2007.12.044
  • Kolli RP, Wojes RM, Zaucha S, et al. A subnanoscale study of the nucleation, growth, and coarsening kinetics of Cu-rich precipitates in a multicomponent Fe-Cu based steel. Int J Mater Res. 2008;99(5):513–527. doi: 10.3139/146.101662
  • Kolli RP, Seidman DN. Coarsening kinetics of Cu-rich precipitates in a concentrated multicomponent Fe-Cu based steel. Int J Mater Res. 2011;102(9):1115–1124. doi: 10.3139/146.110571
  • Saha A, Jung J, Olson GB. Prototype evaluation of transformation toughened blast resistant naval hull steels: Part II. J Comput-Aided Mater. 2007;14(2):201–233. doi: 10.1007/s10820-006-9032-y
  • Kolli RP, Seidman DN. Comparison of compositional and morphological atom-probe tomography analyses for a multicomponent Fe-Cu steel. Microsc Microanal. 2007;13(4):272–284. doi: 10.1017/S1431927607070675
  • Kolli RP, Mao Z, Seidman DN, et al. Identification of a Ni(0.5)(Al(0.5-x)Mn(x)) B2 phase at the heterophase interfaces of Cu-rich precipitates in an alpha-Fe matrix. Appl Phys Lett. 2007;91(24):241903. doi: 10.1063/1.2820378
  • Marquis EA, Seidman DN, Asta M, et al. Mg segregation at Al/Al3Sc heterophase interfaces on an atomic scale: experiments and computations. Phys Rev Lett. 2003;91(3):036101. doi: 10.1103/PhysRevLett.91.036101
  • Heinrich A, Al-Kassab T, Kirchheim R. Investigation of the early stages of decomposition of Cu-0.7at.% Fe with the tomographic atom probe. Mat Sci Eng A-Struct. 2003;353(1–2):92–98. doi: 10.1016/S0921-5093(02)00673-1
  • Vaumousse D, Cerezo A, Warren PJ. A procedure for quantification of precipitate microstructures from three-dimensional atom probe data. Ultramicroscopy. 2003;95(1–4):215–221. doi: 10.1016/S0304-3991(02)00319-4
  • Hellman OC, Vandenbroucke JA, Rusing J, et al. Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc Microanal. 2000;6(5):437–444.
  • Hellman O, Vandenbroucke J, du Rivage JB, et al. Application software for data analysis for three-dimensional atom probe microscopy. Mat Sci Eng A-Struct. 2002;327(1):29–33. doi: 10.1016/S0921-5093(01)01887-1
  • Hellman OC, du Rivage JB, Seidman DN. Efficient sampling for three-dimensional atom probe microscopy data. Ultramicroscopy. 2003;95(1–4):199–205. doi: 10.1016/S0304-3991(02)00317-0
  • Marquis EA, Hyde JM. Applications of atom-probe tomography to the characterisation of solute behaviours. Mat Sci Eng R. 2010;69(4–5):37–62. doi: 10.1016/j.mser.2010.05.001
  • Miller MK, Kenik EA. Atom probe tomography: a technique for nanoscale characterization. Microsc Microanal. 2004;10(3):336–341. doi: 10.1017/S1431927604040577
  • Miller MK. Contributions of atom probe tomography to the understanding of nickel-based superalloys. Micron. 2001;32(8):757–764. doi: 10.1016/S0968-4328(00)00083-4
  • Meher S, Yan HY, Nag S, et al. Solute partitioning and site preference in gamma/gamma' cobalt-base alloys. Scripta Mater. 2012;67(10):850–853. doi: 10.1016/j.scriptamat.2012.08.006
  • Meher S, Nag S, Tiley J, et al. Coarsening kinetics of gamma' precipitates in cobalt-base alloys.Acta Materialia. 2013;61(11):4266–4276. doi: 10.1016/j.actamat.2013.03.052
  • Gault B, Cui XY, Moody MP, et al. Atom probe microscopy investigation of Mg site occupancy within delta' precipitates in an Al-Mg-Li alloy. Scripta Mater. 2012;66(11):903–906. doi: 10.1016/j.scriptamat.2012.02.021
  • Blavette D, Cadel E, Deconihout B. The role of the atom probe in the study of nickel-based superalloys. Mater Charact. 2000;44(1–2):133–157. doi: 10.1016/S1044-5803(99)00050-9
  • Hono K, Chiba A, Sakurai T, et al. Determination of site occupation probability of Cu in Ni3al by atom-probe field-ion microscopy. Acta Metall Mater. 1992;40(3):419–425. doi: 10.1016/0956-7151(92)90390-Z
  • Rademacher T, Al-Kassab T, Deges J, et al. Ordering and site occupancy of D0(3) ordered Fe3Al-5 at%Cr evaluated by means of atom probe tomography. Ultramicroscopy. 2011;111(6):719–724. doi: 10.1016/j.ultramic.2010.12.009
  • Gault B, Moody MP, Cairney JM, et al. Atom probe crystallography. Mater Today. 2012;15(9):378–386. doi: 10.1016/S1369-7021(12)70164-5
  • Araullo-Peters VJ, Gault B, Shrestha SL, et al. Atom probe crystallography: atomic-scale 3-D orientation mapping. Scripta Mater. 2012;66(11):907–910. doi: 10.1016/j.scriptamat.2012.02.022
  • Ceguerra AV, Breen AJ, Stephenson LT, et al. The rise of computational techniques in atom probe microscopy. Curr Opin Solid St M. 2013;17(5):224–235. doi: 10.1016/j.cossms.2013.09.006
  • Moody MP, Tang FZ, Gault B, et al. Atom probe crystallography: characterization of grain boundary orientation relationships in nanocrystalline aluminium. Ultramicroscopy. 2011;111(6):493–499. doi: 10.1016/j.ultramic.2010.11.014
  • Meher S, Nandwana P, Rojhirunsakool T, et al. Probing the crystallography of ordered phases by coupling of orientation microscopy with atom probe tomography. Ultramicroscopy. 2015;148:67–74. doi: 10.1016/j.ultramic.2014.09.001
  • Meher S, Rojhirunsakool T, Nandwana P, et al. Determination of solute site occupancies within γ′ precipitates in nickel-base superalloys via orientation-specific atom probe tomography. Ultramicroscopy. 2015;159(2):272–277. doi: 10.1016/j.ultramic.2015.04.015
  • Meher S, Banerjee R. Partitioning and site occupancy of Ta and Mo in Co-base gamma/gamma' alloys studied by atom probe tomography. Intermetallics. 2014;49:138–142. doi: 10.1016/j.intermet.2014.01.020
  • Aranda MM, Rementeria R, Poplawsky J, et al. The role of C and Mn at the austenite/pearlite reaction front during non-steady-state pearlite growth in a Fe-C-Mn steel. Scripta Mater. 2015;104:67–70. doi: 10.1016/j.scriptamat.2015.04.005
  • Tu YY, Mao ZG, Zhang Q, et al. Atomistic interaction between silicon and manganese in pearlitic steel: combined atom probe tomography and first-principle calculations. Mater Lett. 2014;134:84–86. doi: 10.1016/j.matlet.2014.07.057
  • Contieri RJ, Lopes ESN, Caram R, et al. Effects of cooling rate on the microstructure and solute partitioning in near eutectoid Ti-Cu alloys. Philos Mag. 2014;94(21):2350–2371. doi: 10.1080/14786435.2014.913113
  • Seol JB, Raabe D, Choi P, et al. Direct evidence for the formation of ordered carbides in a ferrite-based low-density Fe-Mn-Al-C alloy studied by transmission electron microscopy and atom probe tomography. Scripta Mater. 2013;68(6):348–353. doi: 10.1016/j.scriptamat.2012.08.013
  • Devaraj A, Nag S, Muddle BC, et al. Competing martensitic, bainitic, and pearlitic transformations in a hypoeutectoid Ti-5Cu allloy. Metall Mater Trans A. 2011;42(5):1139–1143. doi: 10.1007/s11661-011-0656-5
  • Devaraj A, Kaspar TC, Ramanan S, et al. Nanoscale phase separation in epitaxial Cr-Mo and Cr-V alloy thin films studied using atom probe tomography: comparison of experiments and simulation. J Appl Phys. 2014;116(19):193512. doi: 10.1063/1.4901465
  • Nag S, Zheng Y, Williams REA, et al. Non-classical homogeneous precipitation mediated by compositional fluctuations in titanium alloys. Acta Materialia. 2012;60(18):6247–6256. doi: 10.1016/j.actamat.2012.07.033
  • Nag S, Mahdak KC, Devaraj A, et al. Phase separation in immiscible silver-copper alloy thin films. J Mater Sci. 2009;44(13):3393–3401. doi: 10.1007/s10853-009-3449-0
  • Danoix F, Auger P, Blavette D. Hardening of aged duplex stainless steels by spinodal decomposition. Microsc Microanal. 2004;10(3):349–354. doi: 10.1017/S1431927604040516
  • Zhou J, Odqvist J, Thuvander M, et al. Quantitative evaluation of spinodal decomposition in Fe-Cr by atom probe tomography and radial distribution function analysis. Microsc Microanal. 2013;19(3):665–675. doi: 10.1017/S1431927613000470
  • Capdevila C, Miller MK, Russell KF, et al. Phase separation in PM 2000 (TM) Fe-base ODS alloy: experimental study at the atomic level. Mat Sci Eng A-Struct. 2008;490(1–2):277–288. doi: 10.1016/j.msea.2008.01.029
  • Muller CM, Sologubenko AS, Gerstl SSA, et al. On spinodal decomposition in Cu-34 at % Ta thin films – an atom probe tomography and transmission electron microscopy study. Acta Materialia. 2015;89:181–192. doi: 10.1016/j.actamat.2015.01.073
  • Emo J, Pareige C, Saillet S, et al. Kinetics of secondary phase precipitation during spinodal decomposition in duplex stainless steels: a kinetic Monte Carlo model – comparison with atom probe tomography experiments. J Nucl Mater. 2014;451(1–3):361–365. doi: 10.1016/j.jnucmat.2014.04.025
  • Danoix F, Auger P. Atom probe studies of the Fe-Cr system and stainless steels aged at intermediate temperature: a review. Mater Charact. 2000;44(1–2):177–201. doi: 10.1016/S1044-5803(99)00048-0
  • Puthucode A, Devaraj A, Nag S, et al. De-vitrification of nanoscale phase-separated amorphous thin films in the immiscible copper–niobium system. Philos Mag. 2014;94(15):1622–1641. doi: 10.1080/14786435.2014.892223
  • Katakam S, Devaraj A, Bowden M, et al. Laser assisted crystallization of ferromagnetic amorphous ribbons: a multimodal characterization and thermal model study. J Appl Phys. 2013;114(18):184901. doi: 10.1063/1.4829279
  • DeGeorge V, Devaraj A, Keylin V, et al. Mass balance and atom probe tomography characterization of soft magnetic (Fe65Co65)79.5B13Si2Nb4Cu1.5 nanocomposites. IEEE Trans Magnet. 2015;51(6):1–4. doi: 10.1109/TMAG.2014.2373333
  • Jiang X, Devaraj A, Balamurugan B, et al. Microstructure of multistage annealed nanocrystalline SmCo2Fe2B alloy with enhanced magnetic properties. J Appl Phys. 2014;115(6):063902. doi: 10.1063/1.4865298
  • Oleksak RP, Devaraj A, Herman GS. Atomic-scale structural evolution of Ta–Ni–Si amorphous metal thin films. Mater Lett. 2016;164:9–14. doi: 10.1016/j.matlet.2015.10.112
  • Li X, Ma CT, Lu J, et al. Exchange bias and bistable magneto-resistance states in amorphous TbFeCo thin films. Appl Phys Lett. 2016;108(1):012401. doi: 10.1063/1.4939240
  • Miller MK. Atom probe tomography characterization of solute segregation to dislocations. Microsc Res Techniq. 2006;69(5):359–365. doi: 10.1002/jemt.20291
  • Detor AJ, Miller MK, Schuh CA. Measuring grain-boundary segregation in nanocrystalline alloys: direct validation of statistical techniques using atom probe tomography. Phil Mag Lett. 2007;87(8):581–587. doi: 10.1080/09500830701400125
  • Toyama T, Nozawa Y, Van Renterghem W, et al. Grain boundary segregation in neutron-irradiated 304 stainless steel studied by atom probe tomography. J Nucl Mat. 2012;425(1–3):71–75. doi: 10.1016/j.jnucmat.2011.11.072
  • Seol JB, Lim NS, Lee BH, et al. Atom probe tomography and nano secondary ion mass spectroscopy investigation of the segregation of boron at austenite grain boundaries in 0.5 wt.% carbon steels. Met. Mater. Int. 2011;17(3):413–416. doi: 10.1007/s12540-011-0617-y
  • Miller MK, Hoelzer DT, Kenik EA, et al. Stability of ferritic MA/ODS alloys at high temperatures. Intermetallics. 2005;13(3–4):387–392. doi: 10.1016/j.intermet.2004.07.036
  • Miller MK, Russell KF. Embrittlement of RPV steels: an atom probe tomography perspective. J Nucl Mater. 2007;371(1–3):145–160. doi: 10.1016/j.jnucmat.2007.05.003
  • Cairney JM, Saxey DW, McGrouther D, et al. Site-specific specimen preparation for atom probe tomography of grain boundaries. Physica B. 2007;394(2):267–269. doi: 10.1016/j.physb.2006.12.024
  • Kuzmina M, Ponge D, Raabe D. Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: example of a 9 wt.% medium Mn steel. Acta Materialia. 2015;86:182–192. doi: 10.1016/j.actamat.2014.12.021
  • Kelly TF, Larson DJ, Thompson K, et al. Atom probe tomography of electronic materials. Annu Rev Mater Res. 2007;37:681–727. doi: 10.1146/annurev.matsci.37.052506.084239
  • Lai L. The strategy of advanced analysis in semiconductor nano-device: from nanoprobing to nanoscopy and nanoanalysis. Microsc Microanal. 2014;20(Supplement S3):980–981. doi: 10.1017/S143192761400662X
  • Thompson K, Flaitz PL, Ronsheim P, et al. Imaging of arsenic Cottrell atmospheres around silicon defects by three-dimensional atom probe tomography. Science. 2007;317(5843):1370–1374. doi: 10.1126/science.1145428
  • Ronsheim P, Flaitz P, Hatzistergos M, et al. Impurity measurements in silicon with D-SIMS and atom probe tomography. Appl Surf Sci. 2008;255(4):1547–1550. doi: 10.1016/j.apsusc.2008.05.247
  • Lauhon LJ, Adusumilli P, Ronsheim P, et al. Atom-probe tomography of semiconductor materials and device structures. MRS Bull. 2009;34(10):738–743. doi: 10.1557/mrs2009.248
  • Kim Y-C, Adusumilli P, Lauhon LJ, et al. Three-dimensional atomic-scale mapping of Pd in Ni1–xPdxSi/Si(100) thin films. Appl Phys Lett. 2007;91(11):113106. doi: 10.1063/1.2784196
  • Larson D, Alvis R, Lawrence D, et al. Analysis of bulk dielectrics with atom probe tomography. Microsc Microanal. 2008;14(Supplement S2):1254–1255. doi: 10.1017/S1431927608083657
  • Ulfig R, Thompson K, Alvis R, et al. Three dimensional compositional characterization of dielectric films with LEAP tomography. Microsc Microanal. 2007;13(Supplement S02):828–829.
  • Inoue K, Yano F, Nishida A, et al. Dopant distributions in n-MOSFET structure observed by atom probe tomography. Ultramicroscopy. 2009;109(12):1479–1484. doi: 10.1016/j.ultramic.2009.08.002
  • Larson DJ, Lawrence D, Lefebvre W, et al. Toward atom probe tomography of microelectronic devices. J Phys Conf Ser. 2011;326. doi: 10.1088/1742-6596/326/1/012030
  • Kambham AK, Mody J, Gilbert M, et al. Atom-probe for FinFET dopant characterization. Ultramicroscopy. 2011;111(6):535–539. doi: 10.1016/j.ultramic.2011.01.017
  • Takamizawa H, Shimizu Y, Nozawa Y, et al. Dopant characterization in self-regulatory plasma doped fin field-effect transistors by atom probe tomography. Appl Phys Lett. 2012;100(9):93502. doi: 10.1063/1.3690864
  • Han B, Takamizawa H, Shimizu Y, et al. Phosphorus and boron diffusion paths in polycrystalline silicon gate of a trench-type three-dimensional metal-oxide-semiconductor field effect transistor investigated by atom probe tomography. Appl Phys Lett. 2015;107(2):23506. doi: 10.1063/1.4926970
  • Kambham AK, Kumar A, Gilbert M, et al. 3D site specific sample preparation and analysis of 3D devices (FinFETs) by atom probe tomography. Ultramicroscopy. 2013;132:65–69. doi: 10.1016/j.ultramic.2012.09.013
  • Kambham AK, Zschaetzsch G, Sasaki Y, et al. Atom probe tomography for 3D-dopant analysis in FinFET devices. 2012 Symposium on VLSI Technology (VLSIT), 2012 Jun 12–14; 2012. p. 77–78.
  • Kambham AK, Kumar A, Florakis A, et al. Three-dimensional doping and diffusion in nano scaled devices as studied by atom probe tomography. Nanotechnology. 2013;24(27):275705. doi: 10.1088/0957-4484/24/27/275705
  • Panciera F, Hoummada K, Gregoire M, et al. Atom probe tomography of SRAM transistors: specimen preparation methods and analysis. Microelectron Eng. 2013;107:167–172. doi: 10.1016/j.mee.2012.12.021
  • Hatzistergos MS, Hopstaken M, Kim E, et al. Characterization of 3D dopant distribution in state of the art FinFET structures. Microsc Microanal. 2013;19(Supplement S2):960–961. doi: 10.1017/S143192761300679X
  • Grenier A, Duguay S, Barnes JP, et al. 3D analysis of advanced nano-devices using electron and atom probe tomography. Ultramicroscopy. 2014;136:185–192. doi: 10.1016/j.ultramic.2013.10.001
  • Gilbert M, Vandervorst W, Koelling S, et al. Atom probe analysis of a 3D finFET with high-k metal gate. Ultramicroscopy. 2011;111(6):530–534. doi: 10.1016/j.ultramic.2010.12.025
  • Koelling S, Innocenti N, Hellings G, et al. Characteristics of cross-sectional atom probe analysis on semiconductor structures. Ultramicroscopy. 2011;111(6):540–545. doi: 10.1016/j.ultramic.2011.01.004
  • Silaeva EP, Karahka M, Kreuzer HJ. Atom probe tomography and field evaporation of insulators and semiconductors: theoretical issues. Curr Opin Solid St M. 2013;17(5):211–216. doi: 10.1016/j.cossms.2013.08.001
  • Joshi VV, Lavender C, Moxon V, et al. Development of Ti-6Al-4V and Ti-1Al-8V-5Fe alloys using low-cost TiH2 powder feedstock. J Mater Eng Perform. 2013;22(4):995–1003. doi: 10.1007/s11665-012-0386-x
  • Agrawal R, Bernal RA, Isheim D, et al. Characterizing atomic composition and dopant distribution in wide band gap semiconductor nanowires using laser-assisted atom probe tomography. J Phys Chem C. 2011;115(36):17688–17694. doi: 10.1021/jp2047823
  • Zhang SX, Hemesath ER, Perea DE, et al. Relative influence of surface states and bulk impurities on the electrical properties of Ge nanowires. Nano Lett. 2009;9(9):3268–3274. doi: 10.1021/nl901548u
  • Eichfeld CM, Gerstl SSA, Prosa T, et al. Local electrode atom probe analysis of silicon nanowires grown with an aluminum catalyst. Nanotechnology. 2012;23(21):215205. doi: 10.1088/0957-4484/23/21/215205
  • Moutanabbir O, Isheim D, Blumtritt H, et al. Colossal injection of catalyst atoms into silicon nanowires. Nature. 2013;496(7443):78–82. doi: 10.1038/nature11999
  • Yu LW, Chen WH, O’Donnell B, et al. Growth-in-place deployment of in-plane silicon nanowires. Appl Phys Lett. 2011;99(20):203104. doi: 10.1063/1.3659895
  • Allen JE, Hemesath ER, Perea DE, et al. High-resolution detection of Au catalyst atoms in Si nanowires. Nat Nanotechnol. 2008;3(3):168–173. doi: 10.1038/nnano.2008.5
  • Schlitz RA, Perea DE, Lensch-Falk JL, et al. Correlating dopant distributions and electrical properties of boron-doped silicon nanowires. Appl Phys Lett. 2009;95:162101.
  • Yoon K, Hyun JK, Connell JG, et al. Barrier height measurement of metal contacts to Si nanowires using internal photoemission of hot carriers. Nano Lett. 2013;13(12):6183–6188. doi: 10.1021/nl4035412
  • den Hertog MI, Schmid H, Cooper D, et al. Mapping active dopants in single Silicon nanowires using off-axis electron holography. Nano Lett. 2009;9(11):3837–3843. doi: 10.1021/nl902024h
  • Connell JG, Yoon K, Perea DE, et al. Identification of an intrinsic source of doping inhomogeneity in vapor-liquid-solid-grown nanowires. Nano Lett. 2013;13(1):199–206. doi: 10.1021/nl3038695
  • Perea DE, Hemesath ER, Schwalbach EJ, et al. Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire. Nat Nanotechnol. 2009;4(5):315–319. doi: 10.1038/nnano.2009.51
  • Schmitz G, Abouzari R, Berkemeier F, et al. Nanoanalysis and ion conductivity of thin film battery materials. Z Phys Chem. 2010;224(10–12):1795–1829. doi: 10.1524/zpch.2010.0055
  • Diercks DR, Musselman M, Morgenstern A, et al. Evidence for anisotropic mechanical behavior and nanoscale chemical heterogeneity in cycled LiCoO2. J Electrochem Soc. 2014;161(11):F3039–F3045. doi: 10.1149/2.0071411jes
  • Devaraj A, Gu M, Colby R, et al. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes. Nat Commun. 2015;6:8014. doi: 10.1038/ncomms9014
  • Santhanagopalan D, Schreiber DK, Perea DE, et al. Effects of laser energy and wavelength on the analysis of LiFePO4 using laser assisted atom probe tomography. Ultramicroscopy. 2015;148:57–66. doi: 10.1016/j.ultramic.2014.09.004
  • Bagot PAJ, Kreuzer HJ, Cerezo A, et al. A model for oxidation-driven surface segregation and transport on Pt-alloys studied by atom probe tomography. Surf Sci. 2011;605(15–16):1544–1549. doi: 10.1016/j.susc.2011.05.026
  • Li T, Bagot PAJ, Marquis EA, et al. Characterization of oxidation and reduction of Pt-Ru and Pt-Rh-Ru alloys by atom probe tomography and comparison with Pt-Rh. J Phys Chem C. 2012;116(33):17633–17640. doi: 10.1021/jp304359m
  • Li T, Bagot PAJ, Marquis EA, et al. Characterization of oxidation and reduction of a Palladium-Rhodium alloy by atom-probe tomography. J Phys Chem C. 2012;116(7):4760–4766. doi: 10.1021/jp211687m
  • Li T, Bagot PAJ, Marquis EA, et al. Atomic engineering of platinum alloy surfaces. Ultramicroscopy. 2013;132:205–211. doi: 10.1016/j.ultramic.2012.10.012
  • Bagot PAJ, Kruska K, Haley D, et al. Oxidation and surface segregation behavior of a Pt-Pd-Rh alloy catalyst. J Phys Chem C. 2014;118(45):26130–26138. doi: 10.1021/jp508144z
  • Tedsree K, Li T, Jones S, et al. Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst. Nat Nanotechnol. 2011;6(5):302–307. doi: 10.1038/nnano.2011.42
  • Felfer P, Benndorf P, Masters A, et al. Revealing the distribution of the atoms within individual bimetallic catalyst nanoparticles. Angew Chem Int Edit. 2014;53(42):11190–11193. doi: 10.1002/anie.201405043
  • Kuchibhatla SVNT, Shutthanandan V, Prosa TJ, et al. Three-dimensional chemical imaging of embedded nanoparticles using atom probe tomography. Nanotechnology. 2012;23: 215704. doi: 10.1088/0957-4484/23/21/215704
  • Vilayurganapathy S, Devaraj A, Colby R, et al. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO. Nanotechnology. 2013;24:095707). doi: 10.1088/0957-4484/24/9/095707
  • Perea DE, Arslan I, Liu J, et al. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography. Nat Commun. 2015;6:7589. doi: 10.1038/ncomms8589
  • Devaraj A, Vijayakumar M, Bao J, et al. Discerning the location and nature of coke deposition from surface to bulk of spent zeolite catalysts. Sci Rep. 2016;6:37586. doi: 10.1038/srep37586
  • Dumpala S, Broderick SR, Bagot PAJ, et al. An integrated high temperature environmental cell for atom probe tomography studies of gas-surface reactions: instrumentation and results. Ultramicroscopy. 2014;141:16–21. doi: 10.1016/j.ultramic.2014.03.002
  • Zinner EK, Moynier F, Stroud RM. Laboratory technology and cosmochemistry. Proc Nat Acad Sci. 2011;108(48):19135–19141. doi: 10.1073/pnas.1015118108
  • Heck PR, Pellin MJ, Davis AM, et al. Atom-probe tomographic analyses of presolar silicon carbide grains and meteoritic nanodiamonds – first results on silicon carbide. Lunar and Planetary Science Conference. Woodlands, Texas, 2010.
  • Stadermann FJ, Zhao X, Daulton TL, et al. Atom-probe tomographic study of the three-dimensional sturcture of presolar silicon carbide and nanodiamonds at atomic resolution. Lunar and Planetary Science Conference. Woodlands, Texas, 2010.
  • Stadermann FJ, Isheim D, Zhao X, et al. Atom-probe tomographic characterization of meteoritic nanodiamonds and presolar SiC. 42nd Lunar and Planetary Science Conference. The Woodlands, Texas, USA, 2011.
  • Daulton TL, Eisenhour DD, Bernatowicz TJ, et al. Genesis of presolar diamonds: comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds. Geochimica et Cosmochimica Acta. 1996;60(23):4853–4872. doi: 10.1016/S0016-7037(96)00223-2
  • Heck PR, Pellin MJ, Davis AM, et al. Atom-probe tomography of meteoritic and synthetic nanodiamonds. Meteorit Planet Sci. 2011;46:A90–A90.
  • Valley JW, Cavosie AJ, Ushikubo T, et al. Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nature Geoscience. 2014;7:219–223. doi: 10.1038/ngeo2075
  • Parman SW, Gorman B, Jackson C, et al. Effect of laser power on atom probe tomography of silicates. American Geophysical Union, Fall Meeting. Denver, CO, USA, 2010.
  • Parman SW, Gorman B, Jackson C, et al. Atom probe tomography of olivine. American Geophysical Union, Fall Meeting. Denver, CO, USA, 2010.
  • Muller EW. Das Feldionenmikroskop. Z Phys. 1951;131(1):136–142. doi: 10.1007/BF01329651
  • Abbott RC. Dc field desorption of macromolecules. J Chem Phys. 1965;43(12). 4533. doi: 10.1063/1.1696736
  • Muller EW, Rendulic KD. Field ion microscopical imaging of biomolecules. Science. 1967;156(3777):961–963. doi: 10.1126/science.156.3777.961
  • Joester D, Hillier A, Zhang Y, et al. Organic materials and organic/inorganic heterostructures in atom probe tomography. Microscopy Today. 2012;20(3):26–31. doi: 10.1017/S1551929512000260
  • Kelly TF, Nishikawa O, Panitz JA, et al. Prospects for nanobiology with atom-probe tomography. MRS Bull. 2009;34(10):744–750. doi: 10.1557/mrs2009.249
  • Chasteen ND, Harrison PM. Mineralization in ferritin: an efficient means of iron storage. J Struct Biol. 1999;126(3):182–194. doi: 10.1006/jsbi.1999.4118
  • Panitz JA. Point-projection imaging of macromolecular contours. J Microsc-Oxford. 1982;125(Jan):3–23. doi: 10.1111/j.1365-2818.1982.tb00319.x
  • Panitz JA. Point-projection imaging of unstained ferritin clusters. Ultramicroscopy. 1982;7(3):241–247. doi: 10.1016/0304-3991(82)90171-1
  • Greene ME, Kelly TF, Larson DJ, et al. Focused ion beam fabrication of solidified ferritin into nanoscale volumes for compositional analysis using atom probe tomography. J Microsc-Oxford. 2012;247(3):288–299. doi: 10.1111/j.1365-2818.2012.03644.x
  • Gordon LM, Cohen MJ, Joester D. Towards atom probe tomography of hybrid organic-inorganic nanoparticles. Microsc Microanal. 2013;19(Suppl. 2):2013.
  • Narayan K, Prosa TJ, Fu J, et al. Chemical mapping of mammalian cells by tom probe tomography. J Struct Biol. 2012;178(2):98–107. doi: 10.1016/j.jsb.2011.12.016
  • Marquis EA, Geiser BP, Prosa TJ, et al. Evolution of tip shape during field evaporation of complex multilayer structures. J Microsc-Oxford. 2011;241(3):225–233. doi: 10.1111/j.1365-2818.2010.03421.x
  • Gordon LM, Joester D. Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth. Nature. 2011;469(7329):194–197. doi: 10.1038/nature09686
  • Gordon LM, Tran L, Joester D. Atom probe tomography of apatites and bone-type mineralized tissues. ACS Nano. 2012;6(12):10667–10675. doi: 10.1021/nn3049957
  • Karlsson J, Sundell G, Thuvander M, et al. Atomically resolved tissue integration. Nano Lett. 2014;14(8):4220–4223. doi: 10.1021/nl501564f
  • Gordon LM, Cohen MJ, MacRenaris KW, et al. Amorphous intergranular phases control the properties of rodent tooth enamel. Science. 2015;347(6223):746–750. doi: 10.1126/science.1258950
  • Gordon LM, Joester D. Mapping residual organics and carbonate at grain boundaries and in the amorphous interphase in mouse incisor enamel. Front Physiol. 2014;5:509.
  • Xu Z, Li D, Xu W, et al. Simulation of heterogeneous atom probe tip shapes evolution during field evaporation using a level set method and different evaporation models. Comput Phys Commun. 2015;189:106–113. doi: 10.1016/j.cpc.2014.12.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.