2,400
Views
2
CrossRef citations to date
0
Altmetric
FULL CRITICAL REVIEW

Microfluidic synthesis of functional inorganic micro-/nanoparticles and applications in biomedical engineering

, &
Pages 461-487 | Received 26 Jun 2017, Accepted 23 Jan 2018, Published online: 08 Feb 2018

References

  • Hao NJ, Li LF, Tang FQ. Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. Int Mater Rev. 2017;62:57–77.
  • Hao NJ, Neranon K, Ramström O, et al. Glyconanomaterials for biosensing applications. Biosens Bioelectron. 2016;76:113–130.
  • Alaca B E. Integration of one-dimensional nanostructures with microsystems: an overview. Int Mater Rev. 2009;54:245–282.
  • Marre S, Jensen KF. Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev. 2010;39:1183–1202.
  • Feng Q, Sun J, Jiang X. Microfluidics-mediated assembly of functional nanoparticles for cancer-related pharmaceutical applications. Nanoscale. 2016;8:12430–12443.
  • Zhao C-X, He L, Qiao SZ, et al. Nanoparticle synthesis in microreactors. Chem Eng Sci. 2011;66:1463–1479.
  • Dendukuri D, Doyle PS. The synthesis and assembly of polymeric microparticles using microfluidic. Adv Mater. 2009;21:4071–4086.
  • Chung BG, Lee K-H, Khademhosseini A, et al. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip. 2012;12:45–59.
  • Capretto L, Carugo D, Mazzitelli S, et al. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Adv Drug Deliv Rev. 2013;65:1496–1532.
  • Wang W, Zhang M-J, Chu L-Y. Functional polymeric microparticles engineered from controllable microfluidic emulsions. Acc Chem Res. 2014;47:373–384.
  • Baah D, Floyd-Smith T. Microfluidics for particle synthesis from photocrosslinkable materials. Microfluid Nanofluid. 2014;17:431–455.
  • Hao NJ, Zhang XJ. Microfluidic screening of circulating tumor biomarkers towards liquid biopsy. Sep Purif Rev. 2018;47:19–48.
  • Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507:181–189.
  • Abou-Hassan A, Sandre O, Cabuil V. Microfluidics in inorganic chemistry. Angew Chem Int Ed. 2010;49:6268–6286.
  • Song Y, Hormes J, Kumar CSSR. Microfluidic synthesis of nanomaterials. Small. 2008;4:698–711.
  • Luo G, Du L, Wang Y, et al. Controllable preparation of particles with microfluidics. Particuology. 2011;9:545–558.
  • Teh S-Y, Lin R, Hung L-H, et al. Droplet microfluidics. Lab Chip. 2008;8:198–220.
  • Lin XZ, Terepka AD, Yang H. Synthesis of silver nanoparticles in a continuous flow tubular microreactor. Nano Lett. 2004;4:2227–2232.
  • Uson L, Sebastian V, Arruebo M, et al. Continuous microfluidic synthesis and functionalization of gold nanorods. Chem Eng J. 2016;285:286–292.
  • Boken J, Soni SK, Kumar D. Microfluidic synthesis of nanoparticles and their biosensing applications. Crit Rev Anal Chem. 2016;46:538–561.
  • Chan EM, Alivisatos AP, Mathies RA. High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. J Am Chem Soc. 2005;127:13854–13861.
  • Gomez L, Arruebo M, Sebastian V, et al. Facile synthesis of SiO2–Au nanoshells in a three-stage microfluidic system. J Mater Chem. 2012;22:21420–21425.
  • Kashid MN, Gupta A, Renken A, et al. Numbering-up and mass transfer studies of liquid-liquid two-phase microstructured reactors. Chem Eng J. 2010;158:233–240.
  • Al-Rawashdeh M, Yu F, Nijhuis TA, et al. Numbered-up gas-liquid micro/milli channels reactor with modular flow distributor. Chem Eng J. 2012;207–208:645–655.
  • Song H, Chen DL, Ismagilov RF. Reactions in droplets in microfluidic channels. Angew Chem Int Ed. 2006;45:7336–7356.
  • Ma J, Lee S, Yi C, et al. Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications – a review. Lab Chip. 2017;17:209–226.
  • Cabeza VS, Kuhn S, Kulkarni A, et al. Size-controlled flow synthesis of gold nanoparticles using a segmented flow micro fluidic platform. Langmuir. 2012;28:7007–7013.
  • Duraiswamy S, Khan SA. Droplet-based microfluidic synthesis of anisotropic metal nanocrystals. Small. 2009;5:2828–2834.
  • Wagner J, Tshikhudo TR, Köhler JM. Microfluidic generation of metal nanoparticles by borohydride reduction. Chem Eng J. 2008;135:S104–S109.
  • Tsunoyama H, Ichikuni N, Tsukuda T. Microfluidic synthesis and catalytic application of pvp-stabilized, ∼1 nm gold clusters. Langmuir. 2008;24:11327–11330.
  • Shalom D, Wootton RCR, Winkle RF, et al. Synthesis of thiol functionalized gold nanoparticles using a continuous flow microfluidic reactor. Mater Lett. 2007;61:1146–1150.
  • Lazarus LL, Yang AS-J, Chu S, et al. Flow-focused synthesis of monodisperse gold nanoparticles using ionic liquids on a microfluidic platform. Lab Chip. 2010;10:3377–3379.
  • Boleininger J, Kurz A, Reuss V, et al. Microfluidic continuous flow synthesis of rod-shaped gold and silver nanocrystals. Phys Chem Chem Phys. 2006;8:3824–3827.
  • Lohse SE, Eller JR, Sivapalan ST, et al. A simple millifluidic benchtop reactor system for the high-throughput synthesis and functionalization of gold nanoparticles with different sizes and shapes. ACS Nano. 2013;7:4135–4150.
  • Weng C, Huang C, Yeh C, et al. Synthesis of hexagonal gold nanoparticles using a microfluidic reaction system. J Micromech Microeng. 2008;18:035019.
  • Gomez L, Sebastian V, Irusta S, et al. Scaled-up production of plasmonic nanoparticles using microfluidics: from metal precursors to functionalized and sterilized nanoparticles. Lab Chip. 2014;14:325–332.
  • Wang L, Ma S, Yang B, et al. Morphology-controlled synthesis of Ag nanoparticle decorated poly(o-phenylenediamine) using microfluidics and its application for hydrogen peroxide detection. Chem Eng J. 2015;268:102–108.
  • Wagner J, Köhler JM. Continuous synthesis of gold nanoparticles in a microreactor. Nano Lett. 2005;5:685–691.
  • SadAbadi H, Badilescu S, Packirisamy M, et al. Integration of gold nanoparticles in PDMS microfluidics for lab-on-a-chip plasmonic biosensing of growth hormones. Biosens Bioelectron. 2013;44:77–84.
  • Leem J, Kang HW, Ko SH, et al. Controllable Ag nanostructure patterning in a microfluidic channel for real-time SERS systems. Nanoscale. 2014;6:2895–2901.
  • He S, Kohira T, Uehara M, et al. Effects of interior wall on continuous fabrication of silver nanoparticles in microcapillary reactor. Chem Lett. 2005;34:748–749.
  • He ST, Liu YL, Maeda H. Controlled synthesis of colloidal silver nanoparticles in capillary micro-flow reactor. J Nanopart Res. 2008;10:209–215.
  • Singh A, Shirolkar M, Lalla NP, et al. Room temperature, water-based, microreactor synthesis of gold and silver nanoparticles. Int J Nanotechnol. 2009;6:541–551.
  • Sugano K, Uchida Y, Ichihashi O, et al. Mixing speed-controlled gold nanoparticle synthesis with pulsed mixing microfluidic system. Microfluid Nanofluid. 2010;9:1165–1174.
  • Yang S-Y, Cheng F-Y, Yeh C-S, et al. Size-controlled synthesis of gold nanoparticles using a micro-mixing system. Microfluid Nanofluid. 2010;8:303–311.
  • Gómez-de Pedro S, Puyol M, Alonso-Chamarro J. Continuous flow synthesis of nanoparticles using ceramic microfluidic devices. Nanotechnology. 2010;21:415603.
  • Lee KG, Hong J, Wang KW, et al. In vitro biosynthesis of metal nanoparticles in microdroplets. ACS Nano. 2012;6:6998–7008.
  • Lazarus LL, Riche CT, Marin BC, et al. Two-phase microfluidic droplet flows of ionic liquids for the synthesis of gold and silver nanoparticles. ACS Appl Mater Interfaces. 2012;4:3077–3083.
  • Jamal F, Jean-Sébastien G, Maël P, et al. Gold nanoparticle synthesis in microfluidic systems and immobilisation in microreactors designed for the catalysis of fine organic reactions. Microsyst Technol. 2012;18:151–158.
  • Liu H, Huang J, Sun D, et al. Microfluidic biosynthesis of silver nanoparticles: effect of process parameters on size distribution. Chem Eng J. 2012;209:568–576.
  • Kumar D V. R, Prasad BL V, Kulkarni AA. Segmented flow synthesis of Ag nanoparticles in spiral microreactor: role of continuous and dispersed phase. Chem Eng J. 2012;192:357–368.
  • Han KN, Li CA, Bui MPN, et al. On-chip electrochemical detection of bio/chemical molecule by nanostructures fabricated in a microfluidic channel. Sensor Actuat B. 2013;177:472–477.
  • Horikoshi S, Sumi T, Serpone N. A hybrid microreactor/microwave high-pressure flow system of a novel concept design and its application to the synthesis of silver nanoparticles. Chem Eng Process. 2013;73:59–66.
  • Parisi J, Su L, Lei Y. In situ synthesis of silver nanoparticle decorated vertical nanowalls in a microfluidic device for ultrasensitive in-channel SERS sensing. Lab Chip. 2013;13:1501–1508.
  • Köhler JM, März A, Popp J, et al. Polyacrylamid/silver composite particles produced via microfluidic photopolymerization for single particle-based SERS microsensorics. Anal Chem. 2013;85:313–318.
  • López-Lorente ÁI, Valcárcel M, Mizaikoff B. Continuous flow synthesis and characterization of tailor-made bare gold nanoparticles for use in SERS. Microchim Acta. 2014;181:1101–1108.
  • Fu Q, Sheng Y, Tang H, et al. Growth mechanism deconvolution of self-limiting supraparticles based on microfluidic system. ACS Nano. 2015;9:172–179.
  • Parisi J, Dong Q, Lei Y. In situ microfluidic fabrication of SERS nanostructures for highly sensitive fingerprint microfluidic-SERS sensing. RSC Adv. 2015;5:14081–14089.
  • Hafermann L, Michael Köhler J. Small gold nanoparticles formed by rapid photochemical flow-through synthesis using microfluid segment technique. J Nanopart Res. 2015;17:152.
  • Xu L, Peng J, Yan M, et al. Droplet synthesis of silver nanoparticles by a microfluidic device. Chem Eng Process. 2016;102:186–193.
  • Kim DJ, Ha D, Zhou Q, et al. A cracking-assisted micro-/nanofluidic fabrication platform for silver nanobelt arrays and nanosensors. Nanoscale. 2017;9:9622–9630.
  • Yagyu H, Tanabe Y, Takano S, et al. Continuous flow synthesis of monodisperse gold nanoparticles by liquid-phase reduction method on glass microfluidic device. Micro Nano Lett. 2017;12:536–539.
  • Bandulasena MV, Vladisavljević GT, Odunmbaku OG, et al. Continuous synthesis of PVP stabilized biocompatible gold nanoparticles with a controlled size using a 3D glass capillary microfluidic device. Chem Eng Sci. 2017;171:233–243.
  • Tofighi G, Lichtenberg H, Pesek J, et al. Continuous microfluidic synthesis of colloidal ultrasmall gold nanoparticles: in situ study of the early reaction stages and application for catalysis. React Chem Eng. 2017;2:876–884.
  • Miyake T, Ueda T, Ikenaga N, et al. Synthesis of Fe2O3 in the capillary-tube reactor. J Mater Sci. 2005;40:5011–5013.
  • Song Y, Modrow H, Henry LL, et al. Microfluidic synthesis of cobalt nanoparticles. Chem Mater. 2006;18:2817–2827.
  • Frenz L, El Harrak A, Pauly M, et al. Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles. Angew Chem Int Ed. 2008;47:6817–6820.
  • Hassan AA, Sandre O, Cabuil V, et al. Synthesis of iron oxide nanoparticles in a microfluidic device: preliminary results in a coaxial flow millichannel. Chem Commun. 2008;74: 1783–1785.
  • Song Y, Zhang T, Yang W, et al. Fine crystal structure transition of cobalt nanoparticles formed in a microfluidic reactor. Cryst Growth Des. 2008;8:3766–3772.
  • Lee W-B, Weng C-H, Cheng F-Y, et al. Biomedical microdevices synthesis of iron oxide nanoparticles using a microfluidic system. Biomed Microdevices. 2009;11:161–171.
  • Song Y, Henrys LL, Yang W. Stable amorphous cobalt nanoparticles formed by an in situ rapidly cooling microfluidic process. Langmuir. 2009;25:10209–10217.
  • Kumar K, Nightingale AM, Krishnadasan SH, et al. Direct synthesis of dextran-coated superparamagnetic iron oxide nanoparticles in a capillary-based droplet reactor. J Mater Chem. 2012;22:4704–4708.
  • Eluri R, Paul B. Synthesis of nickel nanoparticles by hydrazine reduction: mechanistic study and continuous flow synthesis. J Nanopart Res. 2012;14:10115.
  • Jiao M, Zeng J, Jing L, et al. Flow synthesis of biocompatible Fe3O4 nanoparticles: insight into the effects of residence time, fluid velocity, and tube reactor dimension on particle size distribution. Chem Mater. 2015;27:1299–1305.
  • Xu L, Srinivasakannan C, Peng J, et al. Synthesis of nickel nanoparticles by aqueous reduction in continuous flow microreactor. Chem Eng Process. 2015;93:44–49.
  • Lin S, Lin K, Lu D, et al. Preparation of uniform magnetic iron oxide nanoparticles by co-precipitation in a helical module microchannel reactor. J Environ Chem Eng. 2017;5:303–309.
  • Uson L, Arruebo M, Sebastian V, et al. Single phase microreactor for the continuous, high-temperature synthesis of <4 Nm superparamagnetic iron oxide nanoparticles. Chem Eng J. 2018; doi:10.1016/j.cej.2017.12.024.
  • Hayashi N, Sakai Y, Tsunoyama H, et al. Development of ultrafine multichannel microfluidic mixer for synthesis of bimetallic nanoclusters: catalytic application of highly monodisperse AuPd nanoclusters stabilized by poly(N -vinylpyrrolidone). Langmuir. 2014;30:10539–10547.
  • Tofighi G, Gaur A, Doronkin DE, et al. Microfluidic synthesis of ultrasmall AuPd nanoparticles with a homogeneously mixed alloy structure in fast continuous flow for catalytic applications. J Phys Chem C. 2018; doi:10.1021/acs.jpcc.7b11383.
  • Knauer A, Schneider S, Möller F, et al. Screening of plasmonic properties of composed metal nanoparticles by combinatorial synthesis in micro-fluid segment sequences. Chem Eng J. 2013;227:80–89.
  • Yang C-G, Xu Z-R, Lee AP, et al. A microfluidic concentration-gradient droplet array generator for the production of multi-color nanoparticles. Lab Chip. 2013;13:2815–2820.
  • Su YF, Kim H, Kovenklioglu S, et al. Continuous nanoparticle production by microfluidic-based emulsion, mixing and crystallization. J Solid State Chem. 2007;180:2625–2629.
  • Ying Y, Chen G, Zhao Y, et al. A high throughput methodology for continuous preparation of monodispersed nanocrystals in microfluidic reactors. Chem Eng J. 2008;135:209–215.
  • Li S, Xu J, Wang Y, et al. Controllable preparation of nanoparticles by drops and plugs flow in a microchannel device. Langmuir. 2008;24:4194–4199.
  • Wang QA, Wang JX, Li M, et al. Large-scale preparation of barium sulphate nanoparticles in a high-throughput tube-in-tube microchannel reactor. Chem Eng J. 2009;149:473–478.
  • Xu B-Y, Yang Z-Q, Xu J-J, et al. Liquid–gas dual phase microfluidic system for biocompatible CaCO3 hollow nanoparticles generation and simultaneous molecule doping. Chem Commun. 2012;48:11635–11637.
  • Du L, Wang Y, Luo G. In situ preparation of hydrophobic CaCO3 nanoparticles in a gas-liquid microdispersion process. Particuology. 2013;11:421–427.
  • Song Y, Henry LL. Nearly monodispersion CoSm alloy nanoparticles formed by an In-situ rapid cooling and passivating microfluidic process. Nanoscale Res Lett. 2009;4:1130–1134.
  • Song Y, Doomes EE, Prindle J, et al. Investigations into sulfobetaine-stabilized Cu nanoparticle formation: toward development of a microfluidic synthesis. J Phys Chem B. 2005;109:9330–9338.
  • Zhang Y, Jiang W, Wang L. Microfluidic synthesis of copper nanofluids. Microfluid Nanofluid. 2010;9:727–735.
  • Song Y, Li R, Sun Q, et al. Controlled growth of Cu nanoparticles by a tubular microfluidic reactor. Chem Eng J. 2011;168:477–484.
  • Ke T, Zeng X-F, Wang J-X, et al. Microfluidic synthesis of monodisperse Cu nanoparticles in aqueous solution. J Nanosci Nanotechnol. 2011;11:5154–5158.
  • Xu L, Peng J, Srinivasakannan C, et al. Synthesis of copper nanoparticles by a T-shaped microfluidic device. RSC Adv. 2014;4:25155–25159.
  • Wei X, Wang L. Microfluidic method for synthesizing Cu2O nanofluids. J Thermophys Heat Tr. 2010;24:445–448.
  • Xu L, Srinivasakannan C, Peng J, et al. Microfluidic reactor synthesis and photocatalytic behavior of Cu@Cu2O nanocomposite. Appl Surf Sci. 2015;331:449–454.
  • Xu L, Srinivasakannan C, Peng J, et al. Synthesis of Cu-CuO nanocomposite in microreactor and its application to photocatalytic degradation. J Alloy Compd. 2017;695:263–269.
  • Shen X, Song Y, Li S, et al. Spatiotemporal-resolved nanoparticle synthesis via simple programmed microfluidic processes. RSC Adv. 2014;4:34179.
  • Jung JH, Park TJ, Lee SY, et al. Homogeneous biogenic paramagnetic nanoparticle synthesis based on a microfluidic droplet generator. Angew Chem Int Ed. 2012;51:5634–5637.
  • Abou-Hassan A, Bazzi R, Cabuil V. Multistep continuous-flow microsynthesis of magnetic and fluorescent γ-Fe2O3 @SiO2 core/shell nanoparticles. Angew Chem Int Ed. 2009;48:7180–7183.
  • Abou-Hassan A, Dufrêchfer JF, Sandre O, et al. Fluorescence confocal laser scanning microscopy for Ph mapping in a coaxial flow microreactor: application in the synthesis of superparamagnetic nanoparticles. J Phys Chem C. 2009;113:18097–18105.
  • Hoang PH, Park H, Kim DP. Ultrafast and continuous synthesis of unaccommodating inorganic nanomaterials in droplet- and ionic liquid-assisted microfluidic system. J Am Chem Soc. 2011;133:14765–14770.
  • Song Y, Sun Q, Zhang T, et al. Synthesis of worm and chain-like nanoparticles by a microfluidic reactor process. J Nanopart Res. 2010;12:2689–2697.
  • Torigoe K, Watanabe Y, Endo T, et al. Microflow reactor synthesis of palladium nanoparticles stabilized with poly(benzyl ether) dendron ligands. J Nanopart Res. 2010;12:951–960.
  • Karim AM, Al Hasan N, Ivanov S, et al. Synthesis of 1 nm Pd nanoparticles in a microfluidic reactor: insights from in situ X-ray absorption fine structure spectroscopy and small-angle X-ray scattering. J Phys Chem C. 2015;119:13257–13267.
  • Zhang D, Wu F, Peng M, et al. One-Step, facile and ultrafast synthesis of phase- and size-controlled Pt–Bi intermetallic nanocatalysts through continuous-flow microfluidics. J Am Chem Soc. 2015;137:6263–6269.
  • Wang H, Nakamura H, Uehara M, et al. Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor. Chem Commun. 2002;38:1462–1463.
  • Takagi M, Maki T, Miyahara M, et al. Production of titania nanoparticles by using a new microreactor assembled with same axle dual pipe. Chem Eng J. 2004;101:269–276.
  • Cottam BF, Krishnadasan S, DeMello AJ, et al. Accelerated synthesis of titanium oxide nanostructures using microfluidic chips. Lab Chip. 2007;7:167–169.
  • Eun TH, Kim SH, Jeong WJ, et al. Single-step fabrication of monodisperse TiO2 hollow spheres with embedded nanoparticles in microfluidic devices. Chem Mater. 2009;21:201–203.
  • Baah D, Tigner J, Bean K, et al. Preparation of planar graded refractive index nanocomposites using microfluidics. Mater Sci Eng B. 2011;176:883–888.
  • Koziej D, Floryan C, Sperling RA, et al. Microwave dielectric heating of non-aqueous droplets in a microfluidic device for nanoparticle synthesis. Nanoscale. 2013;5:5468–5475.
  • Visaveliya N, Li S, Köhler JM. Heterogeneous nanoassembling: microfluidically prepared poly(methyl methacrylate) nanoparticles on Ag microrods and ZnO microflowers. Part Part Syst Char. 2013;30:614–623.
  • Baruah A, Jindal A, Acharya C, et al. Microfluidic reactors for the morphology controlled synthesis and photocatalytic study of ZnO nanostructures. J Micromech Microeng. 2017;27:035013.
  • Nightingale AM, de Mello JC. Microscale synthesis of quantum dots. J Mater Chem. 2010;20:8454–8463.
  • Edel JB, Fortt R, DeMello JC, et al. Microfluidic routes to the controlled production of nanoparticles. Chem Commun. 2002;38:1136–1137.
  • Shestopalov I, Tice JD, Ismagilov RF. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip. 2004;4:316–321.
  • Hung L-H, Choi KM, Tseng W-Y, et al. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip. 2006;6:174–178.
  • Dai J, Yang X, Hamon M, et al. Particle size controlled synthesis of CdS nanoparticles on a microfluidic chip. Chem Eng J. 2015;280:385–390.
  • Nakamura H, Yamaguchi Y, Miyazaki M, et al. Preparation of CdSe nanocrystals in a micro-flow-reactor. Chem Commun. 2002;38:2844–2845.
  • Nakamura H, Tashiro A, Yamaguchi Y, et al. Application of a microfluidic reaction system for CdSe nanocrystal preparation: their growth kinetics and photoluminescence analysis. Lab Chip. 2004;4:237–240.
  • Luan W, Yang H, Tu S, et al. Open-to-air synthesis of monodisperse CdSe nanocrystals via microfluidic reaction and its kinetics. Nanotechnology. 2007;18:175603.
  • Nightingale AM, Bannock JH, Krishnadasan SH, et al. Large-scale synthesis of nanocrystals in a multichannel droplet reactor. J Mater Chem A. 2013;1:4067–4076.
  • Krishnadasan S, Tovilla J, Vilar R, et al. On-line analysis of CdSe nanoparticle formation in a continuous flow chip-based microreactor. J Mater Chem. 2004;14:2655–2660.
  • Wang H, Tashiro A, Nakamura H, et al. Synthesis of CdSe magic-sized nanocluster and its effect on nanocrystal preparation in a microfluidic reactor. J Mater Res. 2004;19:3157–3161.
  • Wang H, Nakamura H, Uehara M, et al. Highly luminescent CdSe/ZnS nanocrystals synthesized using a single-molecular ZnS source in a microfluidic reactor. Adv Funct Mater. 2005;15:603–608.
  • Yang H, Luan W, Tu S, et al. Synthesis of nanocrystals via microreaction with temperature gradient: towards separation of nucleation and growth. Lab Chip. 2008;8:451–455.
  • Wan Z, Yang H, Luan W, et al. Facile synthesis of monodisperse CdS nanocrystals via microreaction. Nanoscale Res Lett. 2010;5:130–137.
  • Luan W, Yang H, Fan N, et al. Synthesis of efficiently green luminescent CdSe/ZnS nanocrystals via microfluidic reaction. Nanoscale Res Lett. 2008;3:134–139.
  • Marre S, Park J, Rempel J, et al. Supercritical continuous-microflow synthesis of narrow size distribution quantum dots. Adv Mater. 2008;20:4830–4834.
  • Kikkeri R, Laurino P, Odedra A, et al. Synthesis of carbohydrate-functionalized quantum dots in microreactors. Angew Chem Int Ed. 2010;49:2054–2057.
  • Sounart TL, Safier PA, Voigt JA, et al. Spatially-resolved analysis of nanoparticle nucleation and growth in a microfluidic reactor. Lab Chip. 2007;7:908–915.
  • Hu S, Zeng S, Zhang B, et al. Preparation of biofunctionalized quantum dots using microfluidic chips for bioimaging. Analyst. 2014;139:4681–4690.
  • Toyota A, Nakamura H, Ozono H, et al. Combinatorial synthesis of CdSe nanoparticles using microreactors. J Phys Chem C. 2010;114:7527–7534.
  • Lignos I, Stavrakis S, Kilaj A, et al. Millisecond-timescale monitoring of PbS nanoparticle nucleation and growth using droplet-based microfluidics. Small. 2015;11:4009–4017.
  • Yen BKH, Stott NE, Jensen KF, et al. A continuous-flow microcapillary reactor for the preparation of a size series of CdSe nanocrystals. Adv Mater. 2003;15:1858–1862.
  • Chan EM, Mathies RA, Alivisatos AP. Size-controlled growth of CdSe nanocrystals in microfluidic reactors. Nano Lett. 2003;3:199–201.
  • Wang H, Li X, Uehara M, et al. Continuous synthesis of CdSe-ZnS composite nanoparticles in a microfluidic reactor. Chem Commun. 2004;56:48–49.
  • Yen BKH, Günther A, Schmidt MA, et al. A microfabricated gas-liquid segmented flow reactor for high-temperature synthesis: the case of CdSe quantum dots. Angew Chem Int Ed. 2005;44:5447–5451.
  • Krishnadasan S, Brown RJC, DeMello AJ, et al. Intelligent routes to the controlled synthesis of nanoparticles. Lab Chip. 2007;7:1434–1441.
  • Yang H, Fan N, Luan W, et al. Synthesis of monodisperse nanocrystals via microreaction: open-to-air synthesis with oleylamine as a coligand. Nanoscale Res Lett. 2009;4:344–352.
  • Uehara M, Nakamura H, Maeda H. Preparation of ZnS/CdSe/ZnS quantum dot quantum well by using a microfluidic reactor. J Nanosci Nanotechnol. 2009;9:577–583.
  • Yang H, Luan W, Tu ST, et al. High-temperature synthesis of CdSe nanocrystals in a serpentine microchannel: wide size tunability achieved under a short residence time. Cryst Growth Des. 2009;9:1569–1574.
  • Nightingale AM, de Mello JC. Controlled synthesis of III-V quantum dots in microfluidic reactors. ChemPhysChem. 2009;10:2612–2614.
  • Kwon BH, Lee KG, Park TJ, et al. Continuous in situ synthesis of ZnSe/ZnS core/shell quantum dots in a microfluidic reaction system and its application for light-emitting diodes. Small. 2012;8:3257–3262.
  • Lignos I, Protesescu L, Stavrakis S, et al. Facile droplet-based micro fluidic synthesis of monodisperse IV − VI semiconductor nanocrystals with coupled in-line NIR fluorescence detection. Chem Mater. 2014;26:2975–2982.
  • Tian Z-H, Wang Y-J, Xu J-H, et al. Intensification of nucleation stage for synthesizing high quality CdSe quantum dots by using preheated precursors in microfluidic devices. Chem Eng J. 2016;302:498–502.
  • Tian Z-H, Xu J-H, Wang Y-J, et al. Microfluidic synthesis of monodispersed CdSe quantum dots nanocrystals by using mixed fatty amines as ligands. Chem Eng J. 2016;285:20–26.
  • Hong L, Cheung TL, Rao N, et al. Millifluidic synthesis of cadmium sulfide nanoparticles and their application in bioimaging. RSC Adv. 2017;7:36819–36832.
  • Wang J, Zhao H, Zhu Y, et al. Shape-controlled synthesis of CdSe nanocrystals via a programmed microfluidic process. J Phys Chem C. 2017;121:3567–3572.
  • Swain B, Hong MH, Kang L, et al. Optimization of CdSe nanocrystals synthesis with a microfluidic reactor and development of combinatorial synthesis process for industrial production. Chem Eng J. 2017;308:311–321.
  • Kwak CH, Park JP, Lee SS, et al. Droplet-based microfluidic reactor for synthesis of size-controlled CdSe quantum dots. J Nanosci Nanotechnol. 2018;18:1339–1342.
  • Hao N, Li L, Tang F. Shape matters when engineering mesoporous silica-based nanomedicines. Biomater Sci. 2016;4:575–591.
  • Hao N, Chen X, Jayawardana KW, et al. Shape control of mesoporous silica nanomaterials templated with dual cationic surfactants and their antibacterial activities. Biomater Sci. 2016;4:87–91.
  • Hao NJ, Yang HH, Li LF, et al. The shape effect of mesoporous silica nanoparticles on intracellular reactive oxygen species in A375 cells. New J Chem. 2014;38:4258–4266.
  • Hao N, Chen X, Jeon S, et al. Carbohydrate-conjugated hollow oblate mesoporous silica nanoparticles as nanoantibiotics to target mycobacteria. Adv Healthc Mater. 2015;4:2797–2801.
  • Hao N, Tang F, Li L. MCM-41 mesoporous silica sheet with ordered perpendicular nanochannels for protein delivery and the assembly of Ag nanoparticles in catalytic applications. Microporous Mesoporous Mater. 2015;218:223–227.
  • Hao N, Jayawardana KW, Chen X, et al. One-step synthesis of amine-functionalized hollow mesoporous silica nanoparticles as efficient antibacterial and anticancer materials. ACS Appl Mater Interfaces. 2015;7:1040–1045.
  • Khan SA, Günther A, Schmidt MA, et al. Microfluidic synthesis of colloidal silica. Langmuir. 2004;20:8604–8611.
  • Günther A, Khan SA, Thalmann M, et al. Transport and reaction in microscale segmented gas-liquid flow. Lab Chip. 2004;4:278–286.
  • He P, Greenway G, Haswell SJ. Microfluidic synthesis of silica nanoparticles using polyethylenimine polymers. Chem Eng J. 2011;167:694–699.
  • Gutierrez L, Gomez L, Irusta S, et al. Comparative study of the synthesis of silica nanoparticles in micromixer-microreactor and batch reactor systems. Chem Eng J. 2011;171:674–683.
  • Chung CK, Shih TR, Chang CK, et al. Design and experiments of a short-mixing-length baffled microreactor and its application to microfluidic synthesis of nanoparticles. Chem Eng J. 2011;168:790–798.
  • Carroll NJ, Rathod SB, Derbins E, et al. Droplet-based microfluidics for emulsion and solvent evaporation synthesis of monodisperse mesoporous silica microspheres. Langmuir. 2008;24:658–661.
  • Lee I, Yoo Y, Cheng Z, et al. Generation of monodisperse mesoporous silica microspheres with controllable size and surface morphology in a microfluidic device. Adv Funct Mater. 2008;18:4014–4021.
  • Jeong W, Choi M, Lim CH, et al. Microfluidic synthesis of atto-liter scale double emulsions toward ultrafine hollow silica spheres with hierarchical pore networks. Lab Chip. 2012;12:5262–5271.
  • Carroll NJ, Crowder PF, Pylypenko S, et al. Microfluidic synthesis of monodisperse nanoporous oxide particles and control of hierarchical pore structure. ACS Appl Mater Interfaces. 2013;5:3524–3529.
  • Ng TN, Chen XQ, Yeung KL. Direct manipulation of particle size and morphology of ordered mesoporous silica by flow synthesis. RSC Adv. 2015;5:13331–13340.
  • Li D, Guan Z, Zhang W, et al. Synthesis of uniform-size hollow silica microspheres through interfacial polymerization in monodisperse water-in-oil droplets. ACS Appl Mater Interfaces. 2010;2:2711–2714.
  • Tachibana M, Engl W, Panizza P, et al. Combining sol-gel chemistry and millifluidic toward engineering microporous silica ceramic final sizes and shapes: an integrative chemistry approach. Chem Eng Process. 2008;47:1317–1322.
  • Fang A, Gaillard C, Douliez JP. Template-free formation of monodisperse doughnut-shaped silica microparticles by droplet-based microfluidics. Chem Mater. 2011;23:4660–4662.
  • Zhao CX, Middelberg APJ. Microfluidic synthesis of monodisperse hierarchical silica particles with raspberry-like morphology. RSC Adv. 2013;3:21227–21230.
  • Lee D, Weitz DA. Nonspherical colloidosomes with multiple compartments from double emulsions. Small. 2009;5:1932–1935.
  • Chokkalingam V, Weidenhof B, Krämer M, et al. Optimized droplet-based microfluidics scheme for sol-gel reactions. Lab Chip. 2010;10:1700–1705.
  • Lee MH, Prasad V, Lee D. Microfluidic fabrication of stable nanoparticle-shelled bubbles. Langmuir. 2010;26:2227–2230.
  • Chokkalingam V, Weidenhof B, Krämer M, et al. Template-free preparation of mesoporous silica spheres through optimized microfluidics. ChemPhysChem. 2010;11:2091–2095.
  • Wacker JB, Lignos I, Parashar VK, et al. Controlled synthesis of fluorescent silica nanoparticles inside microfluidic droplets. Lab Chip. 2012;12:3111–3116.
  • Ju M, Ji X, Wang C, et al. Preparation of solid, hollow, hole-shell and asymmetric silica microspheres by microfluidic-assisted solvent extraction process. Chem Eng J. 2014;250:112–118.
  • Bchellaoui N, Hayat Z, Mami M, et al. Microfluidic-assisted formation of highly monodisperse and mesoporous silica soft microcapsules. Sci Rep. 2017;7:1278.
  • Hao N, Nie Y, Tadimety A, et al. Microfluidics-mediated self-template synthesis of anisotropic hollow ellipsoidal mesoporous silica nanomaterials. Mater Res Lett. 2017;5:584–590.
  • Nie Y, Hao N, Zhang XJ. Ultrafast synthesis of multifunctional submicrometer hollow silica spheres in microfluidic spiral channels. Sci Rep. 2017;7:3987.
  • Hao N, Nie Y, Zhang XJ. Microfluidic flow synthesis of functional mesoporous silica nanofibers with tunable aspect ratios. ACS Sustainable Chem Eng. 2018;6:1522–1526. doi:10.1021/acssuschemeng.7b03527
  • Park JI, Saffari A, Kumar S, et al. Microfluidic synthesis of polymer and inorganic particulate materials. Annu Rev Mater Res. 2010;40:415–443.
  • Tao S, Yang M, Chen H, et al. Microfluidic synthesis of Ag@Cu2O core-shell nanoparticles with enhanced photocatalytic activity. J Colloid Interf Sci. 2017;486:16–26.
  • Tao S, Yang M, Chen H, et al. Continuous synthesis of hedgehog-like Ag–ZnO nanoparticles in a two-stage microfluidic system. RSC Adv. 2016;6:45503–45511.
  • Sander JS, Studart AR. Monodisperse functional colloidosomes with tailored nanoparticle shells. Langmuir. 2011;27:3301–3307.
  • Köhler JM, Romanus H, Hübner U, et al. Formation of star-like and core-shell AuAg nanoparticles during two- and three-step preparation in batch and in microfluidic systems. J Nanomater. 2007;2007:1–7.
  • Knauer A, Thete A, Li S, et al. Au/Ag/Au double shell nanoparticles with narrow size distribution obtained by continuous micro segmented flow synthesis. Chem Eng J. 2011;166:1164–1169.
  • Fang J, Evans CW, Willis GJ, et al. Sequential microfluidic flow synthesis of CePO4 nanorods decorated with emission tunable quantum dots. Lab Chip. 2010;10:2579–2582.
  • Straß A, Maier R, Güttel R. Continuous synthesis of nanostructured Co3O4@SiO2 core-shell particles in a laminar-flow reactor. Chem Ing Tech. 2017;89:963–967.
  • Weng CH, Huang CC, Yeh CS, et al. Synthesis of hollow, magnetic Fe/Ga-based oxide nanospheres using a bubble templating method in a microfluidic system. Microfluid Nanofluid. 2009;7:841–848.
  • Lee S-K, Liu X, Sebastián Cabeza V, et al. Synthesis, assembly and reaction of a nanocatalyst in microfluidic systems: a general platform. Lab Chip. 2012;12:4080–4084.
  • Song Y, Ji S, Song Y, et al. In situ redox microfluidic synthesis of core–shell nanoparticles and their long-term stability. J Phys Chem C. 2013;117:17274–17284.
  • Han DJ, Jung JH, Choi JS, et al. Synthesis of a 3D graphite microball using a microfluidic droplet generator and its polymer composite with core–shell structure. Lab Chip. 2013;13:4006–4010.
  • Zhu X, Zhang Q, Li Y, et al. Facile crystallization control of LaF3/LaPO4:Ce, Tb nanocrystals in a microfluidic reactor using microwave irradiation. J Mater Chem. 2010;20:1766–1771.
  • Kataoka S, Takeuchi Y, Harada A, et al. Microreactor containing platinum nanoparticles for nitrobenzene hydrogenation. Appl Catal A. 2012;427–428:119–124.
  • Duraiswamy S, Khan SA. Plasmonic nanoshell synthesis in microfluidic composite foams. Nano Lett. 2010;10:3757–3763.
  • Rahman MT, Krishnamurthy PG, Parthiban P, et al. Dynamically tunable nanoparticle engineering enabled by short contact-time microfluidic synthesis with a reactive gas. RSC Adv. 2013;3:2897–2900.
  • Hassan N, Cabuil V, Abou-Hassan A. Continuous multistep microfluidic assisted assembly of fluorescent, plasmonic, and magnetic nanostructures. Angew Chem Int Ed. 2013;52:1994–1997.
  • Khan SA, Jensen KF. Microfluidic synthesis of titania shells on colloidal silica. Adv Mater. 2007;19:2556–2560.
  • Lan W, Li S, Xu J, et al. Synthesis of titania-silica core-shell microspheres via a controlled interface reaction in a microfluidic device. Langmuir. 2011;27:13242–13247.
  • Shang L, Shangguan F, Cheng Y, et al. Microfluidic generation of magnetoresponsive Janus photonic crystal particles. Nanoscale. 2013;5:9553–9557.
  • Singh A, Limaye M, Singh S, et al. A facile and fast approach for the synthesis of doped nanoparticles using a microfluidic device. Nanotechnology. 2008;19:245613.
  • Yang CH, Wang LS, Chen SY, et al. Microfluidic assisted synthesis of silver nanoparticle–chitosan composite microparticles for antibacterial applications. Int J Pharm. 2016;510:493–500.
  • Kim Y, Fay F, Cormode DP, et al. Single step reconstitution of multifunctional high-density lipoprotein-derived nanomaterials using microfluidics. ACS Nano. 2013;7:9975–9983.
  • Chang Z, Serra CA, Bouquey M, et al. Multiscale materials from microcontinuous-flow synthesis: ZnO and Au nanoparticle-filled uniform and homogeneous polymer microbeads. Nanotechnology. 2010;21:015605.
  • He J, Wang L, Wei Z, et al. Vesicular self-assembly of colloidal amphiphiles in microfluidics. ACS Appl Mater Interfaces. 2013;5:9746–9751.
  • Groß GA, Hamann C, Günther M, et al. Formation of polymer and nanoparticle doped polymer minirods by use of the microsegmented flow principle. Chem Eng Technol. 2007;30:341–346.
  • Wang Q, Zhang D, Yang X, et al. Atom-economical in situ synthesis of BaSO4 as imaging contrast agents within poly(N-isopropylacrylamide) microgels using one-step droplet microfluidics. Green Chem. 2013;15:2222–2229.
  • Schabas G, Wang CW, Oskooei A, et al. Formation and shear-induced processing of quantum dot colloidal assemblies in a multiphase microfluidic chip. Langmuir. 2008;24:10596–10603.
  • Wang C-W, Oskooei A, Sinton D, et al. Controlled self-assembly of quantum dot−block copolymer colloids in multiphase microfluidic reactors. Langmuir. 2010;26:716–723.
  • Tran TH, Nguyen CT, Kim D, et al. Microfluidic approach for highly efficient synthesis of heparin-based bioconjugates for drug delivery. Lab Chip. 2012;12:589–594.
  • Chang J-Y, Yang C-H, Huang K-S. Microfluidic assisted preparation of CdSe/ZnS nanocrystals encapsulated into poly(DL-lactide- co -glycolide) microcapsules. Nanotechnology. 2007;18:305305.
  • Valencia PM, Basto PA, Zhang L, et al. Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano. 2010;4:1671–1679.
  • Zhao Y, Shum HC, Chen H, et al. Microfluidic generation of multifunctional quantum dot barcode particles. J Am Chem Soc. 2011;133:8790–8793.
  • Chen Y, Dong PF, Xu JH, et al. Microfluidic generation of multicolor quantum-dot-encoded core-shell microparticles with precise coding and enhanced stability. Langmuir. 2014;30:8538–8542.
  • Seth A, Béalle G, Santanach-Carreras E, et al. Design of vesicles using capillary microfluidic devices: from magnetic to multifunctional vesicles. Adv Mater. 2012;24:3544–3548.
  • Wang W, Yang C, Cui XQ, et al. Droplet microfluidic preparation of au nanoparticles-coated chitosan microbeads for flow-through surface-enhanced Raman scattering detection. Microfluid Nanofluid. 2010;9:1175–1183.
  • Lan W, Li S, Xu J, et al. Controllable preparation of nanoparticle-coated chitosan microspheres in a co-axial microfluidic device. Lab Chip. 2011;11:652–657.
  • Hwang DK, Dendukuri D, Doyle PS. Microfluidic-based synthesis of non-spherical magnetic hydrogel microparticles. Lab Chip. 2008;8:1640–1647.
  • Hasani-Sadrabadi MM, Dashtimoghadam E, Bahlakeh G, et al. On-chip synthesis of fine-tuned bone-seeking hybrid nanoparticles. Nanomedicine. 2015;10:3431–3449.
  • Lin YS, Huang KS, Yang CH, et al. Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture. PLoS One. 2012;7:4–11.
  • Paseta L, Seoane B, Julve D, et al. Accelerating the controlled synthesis of metal–organic frameworks by a microfluidic approach: a nanoliter continuous reactor. ACS Appl Mater Interfaces. 2013;5:9405–9410.
  • Faustini M, Kim J, Jeong G, et al. Microfluidic approach toward continuous and ultrafast synthesis of metal − organic framework crystals and hetero structures in confined microdroplets. J Am Chem Soc. 2013;135:14619–14626.
  • Nam JO, Kim J, Jin SH, et al. Microfluidic preparation of a highly active and stable catalyst by high performance of encapsulation of polyvinylpyrrolidone (PVP)-Pt nanoparticles in microcapsules. J Colloid Interf Sci. 2016;464:246–253.
  • Prasad N, Perumal J, Choi CH, et al. Generation of monodisperse inorganic-organic janus microspheres in a microfluidic device. Adv Funct Mater. 2009;19:1656–1662.
  • Lan W, Li S, Xu J, et al. One-step synthesis of chitosan-silica hybrid microspheres in a microfluidic device. Biomed Microdevices. 2010;12:1087–1095.
  • Hwang H, Kim S-H, Yang S-M. Microfluidic fabrication of SERS-active microspheres for molecular detection. Lab Chip. 2011;11:87–92.
  • Park J, Nie Z, Kumachev A, et al. A microfluidic approach to chemically driven assembly of colloidal particles at Gas-liquid interfaces. Angew Chem Int Ed. 2009;121:5404–5408.
  • Seo M, Gorelikov I, Williams R, et al. Microfluidic assembly of monodisperse, nanoparticle-incorporated perfluorocarbon microbubbles for medical imaging and therapy. Langmuir. 2010;26:13855–13860.
  • Liu D, Herranz-Blanco B, Mäkilä E, et al. Microfluidic templated mesoporous silicon–solid lipid microcomposites for sustained drug delivery. ACS Appl Mater Interfaces. 2013;5:12127–12134.
  • Lan W, Li S, Xu J, et al. A one-step microfluidic approach for controllable preparation of nanoparticle-coated patchy microparticles. Microfluid Nanofluid. 2012;13:491–498.
  • Liu D, Zhang H, Mäkilä E, et al. Microfluidic assisted one-step fabrication of porous silicon@acetalated dextran nanocomposites for precisely controlled combination chemotherapy. Biomaterials. 2015;39:249–259.
  • Gerver RE, Gómez-Sjöberg R, Baxter BC, et al. Programmable microfluidic synthesis of spectrally encoded microspheres. Lab Chip. 2012;12:4716–4723.
  • Shepherd RF, Conrad JC, Rhodes SK, et al. Microfluidic assembly of homogeneous and Janus colloid-filled hydrogel granules. Langmuir. 2006;22:8618–8622.
  • Chen Y, Nurumbetov G, Chen R, et al. Multicompartmental Janus microbeads from branched polymers by single-emulsion droplet microfluidics. Langmuir. 2013;29:12657–12662.
  • Khan IU, Serra CA, Anton N, et al. Production of nanoparticle drug delivery systems with microfluidics tools. Expert Opin Drug Deliv. 2014;12:1–16.
  • Riahi R, Tamayol A, Shaegh SAM, et al. Microfluidics for advanced drug delivery systems. Curr Opin Chem Eng. 2015;7:101–112.
  • Björnmalm M, Yan Y, Caruso F. Engineering and evaluating drug delivery particles in microfluidic devices. J Control Release. 2014;190:139–149.
  • Zhao C-X. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Adv Drug Deliv Rev. 2013;65:1420–1446.
  • Yang S, Guo F, Kiraly B, et al. Microfluidic synthesis of multifunctional Janus particles for biomedical applications. Lab Chip. 2012;12:2097–2102.
  • Hao NJ, Liu HY, Li LL, et al. In vitro degradation behavior of silica nanoparticles under physiological conditions. J Nanosci Nanotechnol. 2012;12:6346–6354.
  • Hao NJ, Nie Y, Zhang XJ. Biomimetic hierarchical walnut kernel-like and erythrocyte-like mesoporous silica nanomaterials: controllable synthesis and versatile applications. Microporous Mesoporous Mater. 2018;261:144–149.
  • Hao N, Li L, Zhang Q, et al. The shape effect of PEGylated mesoporous silica nanoparticles on cellular uptake pathway in Hela cells. Microporous Mesoporous Mater. 2012;162:14–23.
  • Hao N, Li L, Tang F. Facile preparation of ellipsoid-like MCM-41 with parallel channels along the short axis for drug delivery and assembly of Ag nanoparticles for catalysis. J Mater Chem A. 2014;2:11565–11568.
  • Hao NJ, Chorsi HT, Zhang XJ. Hierarchical lotus leaf-like mesoporous silica material with unique bilayer and hollow sandwich-like folds: synthesis, mechanism, and applications. ACS Sustain Chem Eng. 2017;5:2044–2049.
  • Valencia PM, Farokhzad OC, Karnik R, et al. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat Nanotechnol. 2012;7:623–629.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.