1,883
Views
8
CrossRef citations to date
0
Altmetric
Full Critical Review

Nano additive enhanced salt hydrate phase change materials for thermal energy storage

, , , &
Pages 140-183 | Received 26 Aug 2021, Accepted 04 Mar 2022, Published online: 25 Mar 2022

References

  • Roeb M, Neises M, Monnerie N, et al. Technologies and trends in solar power and fuels. Energy Environ Sci. 2011;4(7):2503–2511.
  • World Health Organization. Health in 2015: from MDGs, millennium development goals to SDGs, sustainable development goals; 2015.
  • Cabeza L, Martorell I, Miró L, et al. Introduction to thermal energy storage (TES) systems. In: Cabeza LF, editor. Advances in thermal energy storage systems. Cambridge: Elsevier; 2015. p. 1–28.
  • Kuravi S, Trahan J, Goswami DY, et al. Thermal energy storage technologies and systems for concentrating solar power plants. Prog Energy Combust Sci. 2013;39(4):285–319.
  • Kalidasan B, Pandey AK, Shahabuddin S, et al. Phase change materials integrated solar thermal energy systems: global trends and current practices in experimental approaches. J Energy Storage. 2020;27:101118.
  • Zhang H, Baeyens J, Cáceres G, et al. Thermal energy storage: recent developments and practical aspects. Prog Energy Combust Sci. 2016;53:1–40.
  • Shchukina E, Graham M, Zheng Z, et al. Nanoencapsulation of phase change materials for advanced thermal energy storage systems. Chem Soc Rev. 2018;47(11):4156–4175.
  • Doran PM. Bioprocess engineering principles. London: Elsevier; 1995.
  • Arfken G. International edition university physics. Orlando: Elsevier; 2012.
  • Yang L, Villalobos U, Akhmetov B, et al. A comprehensive review on sub-zero temperature cold thermal energy storage materials, technologies, and applications: state of the art and recent developments. Appl Energy. 2021;288:116555.
  • Chen X, Gao H, Tang Z, et al. Optimization strategies of composite phase change materials for thermal energy storage, transfer, conversion and utilization. Energy Environ Sci. 2020;13(12):4498–4535.
  • Liu C, Rao Z, Zhao J, et al. Review on nanoencapsulated phase change materials: preparation, characterization and heat transfer enhancement. Nano Energy. 2015;13:814–826.
  • Keshteli AN, Sheikholeslami M. Nanoparticle enhanced PCM applications for intensification of thermal performance in building: a review. J Mol Liq. 2019;274:516–533.
  • Chen X, Gao H, Tang Z, et al. Metal-organic framework-based phase change materials for thermal energy storage. Cell Rep Phys Sci. 2020;1(10):100218.
  • Shahid UB, Abdala A. A critical review of phase change material composite performance through figure-of-merit analysis: graphene vs boron nitride. Energy Storage Mater. 2020;34:365–387.
  • Jebasingh BE, Arasu AV. A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications. Energy Storage Mater. 2020;24:52–74.
  • Sivanathan A, Dou Q, Wang Y, et al. Phase change materials for building construction: an overview of nano-/micro-encapsulation. Nanotechnol Rev. 2020;9(1):896–921.
  • Zahir MH, Mohamed SA, Saidur R, et al. Supercooling of phase-change materials and the techniques used to mitigate the phenomenon. Appl Energy. 2019;240:793–817.
  • Rathore PKS, Shukla SK. Potential of macroencapsulated PCM for thermal energy storage in buildings: a comprehensive review. Constr Build Mater. 2019;225:723–744.
  • Aftab W, Huang X, Wu W, et al. Nanoconfined phase change materials for thermal energy applications. Energy Environ Sci. 2018;11(6):1392–1424.
  • Aftab W, Usman A, Shi J, et al. Phase change material-integrated latent heat storage systems for sustainable energy solutions. Energy Environ Sci. 2021;14(8):4268–4291.
  • Kürklü A. Energy storage applications in greenhouses by means of phase change materials (PCMs): a review. Renew Energy. 1998;13(1):89–103.
  • Farid MM, Khudhair AM, Razack SAK, et al. A review on phase change energy storage: materials and applications. Energy Convers Manage. 2004;45(9–10):1597–1615.
  • Rathod MK, Banerjee J. Thermal stability of phase change materials used in latent heat energy storage systems: a review. Renew Sustain Energy Rev. 2013;18:246–258.
  • Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Prog Mater Sci. 2014;65:67–123.
  • Wang X, Dennis M, Hou L. Clathrate hydrate technology for cold storage in air conditioning systems. Renew Sustain Energy Rev. 2014;36:34–51.
  • Ferrer G, Solé A, Barreneche C, et al. Review on the methodology used in thermal stability characterization of phase change materials. Renew Sustain Energy Rev. 2015;50:665–685.
  • Khan Z, Khan Z, Ghafoor A. A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy Convers Manage. 2016;115:132–158.
  • Da Cunha JP, Eames P. Thermal energy storage for low and medium temperature applications using phase change materials – a review. Appl Energy. 2016;177:227–238.
  • Chandel S, Agarwal T. Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. Renew Sustain Energy Rev. 2017;67:581–596.
  • Vasu A, Hagos FY, Noor MM, et al. Corrosion effect of phase change materials in solar thermal energy storage application. Renew Sustain Energy Rev. 2017;76:19–33.
  • Xie N, Huang Z, Luo Z, et al. Inorganic salt hydrate for thermal energy storage. Appl Sci. 2017;7(12):1317.
  • Yang G, Yim Y-J, Lee JW, et al. Carbon-filled organic phase-change materials for thermal energy storage: a review. Molecules. 2019;24(11):2055.
  • Zhou C, Wu S. Medium- and high-temperature latent heat thermal energy storage: material database, system review, and corrosivity assessment. Int J Energy Res. 2019;43(2):621–661.
  • Voronin DV, Ivanov E, Gushchin P, et al. Clay composites for thermal energy storage: a review. Molecules. 2020;25(7):01–26.
  • Schmit H, Rathgeber C, Hoock P, et al. Critical review on measured phase transition enthalpies of salt hydrates in the context of solid-liquid phase change materials. Thermochim Acta. 2020;683:178477.
  • Wong-Pinto L-S, Milian Y, Ushak S. Progress on use of nanoparticles in salt hydrates as phase change materials. Renew Sustain Energy Rev. 2020;122:109727.
  • Jaguemont J, Omar N, Van den Bossche P, et al. Phase-change materials (PCM) for automotive applications: a review. Appl Therm Eng. 2018;132:308–320.
  • Siddique ARM, Mahmud S, Van Heyst B. A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations. J Power Sources. 2018;401:224–237.
  • Lu M, Zhang X, Ji J, et al. Research progress on power battery cooling technology for electric vehicles. J Energy Storage. 2020;27:101155.
  • Kasaeian A, Bahrami L, Pourfayaz F, et al. Experimental studies on the applications of PCMs and nano-PCMs in buildings: a critical review. Energy Build. 2017;154:96–112.
  • Souayfane F, Fardoun F, Biwole P-H. Phase change materials (PCM) for cooling applications in buildings: a review. Energy Build. 2016;129:396–431.
  • Zhou D, Zhao C-Y, Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy. 2012;92:593–605.
  • Dardir M, Panchabikesan K, Haghighat F, et al. Opportunities and challenges of PCM-to-air heat exchangers (PAHXs) for building free cooling applications—a comprehensive review. J Energy Storage. 2019;22:157–175.
  • Sahoo SK, Das MK, Rath P. Application of TCE-PCM based heat sinks for cooling of electronic components: a review. Renew Sustain Energy Rev. 2016;59:550–582.
  • Yang L, Huang J-n, Zhou F. Thermophysical properties and applications of nano-enhanced PCMs: an update review. Energy Convers Manage. 2020;214:112876.
  • Farooq AS, Zhang P. Fundamentals, materials and strategies for personal thermal management by next-generation textiles. Compos A Appl Sci Manuf. 2020;142:106249.
  • Sarier N, Onder E. Organic phase change materials and their textile applications: an overview. Thermochim Acta. 2012;540:7–60.
  • Alehosseini E, Jafari SM. Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry. Trends Food Sci Technol. 2019;91:116–128.
  • Hoang H, Leducq D, Pérez-Masia R, et al. Heat transfer study of submicro-encapsulated PCM plate for food packaging application. Int J Refrig. 2015;52:151–160.
  • Douvi E, Pagkalos C, Dogkas G, et al. Phase change materials in solar domestic hot water systems: a review. Int J Thermofluids. 2021;10:100075.
  • Kee SY, Munusamy Y, Ong KS. Review of solar water heaters incorporating solid-liquid organic phase change materials as thermal storage. Appl Therm Eng. 2018;131:455–471.
  • Shukla A, Buddhi D, Sawhney R. Solar water heaters with phase change material thermal energy storage medium: a review. Renew Sustain Energy Rev. 2009;13(8):2119–2125.
  • Vengadesan E, Senthil R. A review on recent development of thermal performance enhancement methods of flat plate solar water heater. Sol Energy. 2020;206:935–961.
  • Pandey A, Hossain MS, Tyagi VV, et al. Novel approaches and recent developments on potential applications of phase change materials in solar energy. Renew Sustain Energy Rev. 2018;82:281–323.
  • Javadi F, Metselaar H, Ganesan P. Performance improvement of solar thermal systems integrated with phase change materials (PCM), a review. Sol Energy. 2020;206:330–352.
  • Barzin R, Chen JJJ, Young BR, et al. Application of PCM energy storage in combination with night ventilation for space cooling. Appl Energy. 2015;158:412–421.
  • Mehdaoui F, Hazami M, Taghouti H, et al. An experimental and a numerical analysis of the dynamic behavior of PCM-27 included inside a vertical enclosure: application in space heating purposes. Int J Therm Sci. 2018;133:252–265.
  • Du K, Calautit J, Eames P, et al. A state-of-the-art review of the application of phase change materials (PCM) in mobilized-thermal energy storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat supply. Renew Energy. 2020;168:1040–1057.
  • Olabi A, Elsaid K, Sayed ET, et al. Application of nanofluids for enhanced waste heat recovery: a review. Nano Energy. 2021;84: 105871.
  • Balandin AA, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8(3):902–907.
  • Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett. 2001;87(21):215502.
  • Scida K, Stege PW, Haby G, et al. Recent applications of carbon-based nanomaterials in analytical chemistry: critical review. Anal Chim Acta. 2011;691(1–2):6–17.
  • Hsissou R, Seghiri R, Benzekri Z, et al. Polymer composite materials: a comprehensive review. Compos Struct. 2021;262:113640.
  • Fu W, Zou T, Liang X, et al. Preparation and properties of phase change temperature-tuned composite phase change material based on sodium acetate trihydrate–urea/fumed silica for radiant floor heating system. Appl Therm Eng. 2019;162:114253.
  • Xie N, Luo J, Li Z, et al. Salt hydrate/expanded vermiculite composite as a form-stable phase change material for building energy storage. Sol Energy Mater Sol Cells. 2019;189:33–42.
  • Yang Z, Yang Z, Li J, et al. Design of diatomite-based hydrated salt composites with low supercooling degree and enhanced heat transfer for thermal energy storage. Int J Energy Res. 2019;43(13):7058–7074.
  • Li T, Wu D.L., He F, et al. Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage. Int J Heat Mass Transfer. 2017;115:148–157.
  • Zhou D, Zhao C. Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials. Appl Therm Eng. 2011;31(5):970–977.
  • Kumar N, Banerjee D, Chavez Jr R. Exploring additives for improving the reliability of zinc nitrate hexahydrate as a phase change material (PCM). J Energy Storage. 2018;20:153–162.
  • Raj CR, Suresh S, Bhavsar RR, et al. Effect of nano-gallium capsules on thermal energy storage characteristics of manganese organometallic SS-PCM. Thermochim Acta. 2019;680:178341.
  • Zhao T, Munis A, Zheng M, et al. 2-(2-Pentadecyl-4, 5-dihydro-1H-imidazol-1-yl) ethanol as a sustainable inhibitor for copper corrosion in molten hydrated phase change materials. J Mol Liq. 2020;316:113927.
  • Zhang Z, Li W, Zhang W, et al. Experimental, quantum chemical calculations and molecular dynamics (MD) simulation studies of methionine and valine as corrosion inhibitors on carbon steel in phase change materials (PCMs) solution. J Mol Liq. 2018;272:528–538.
  • Mustaffar A, Reay D, Harvey A. The melting of salt hydrate phase change material in an irregular metal foam for the application of traction transient cooling. Therm Sci Eng Prog. 2018;5:454–465.
  • Tao Y, Lin C, He Y. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material. Energy Convers Manage. 2015;97:103–110.
  • Barhoum A, Shalan AE, El-Hout SI, et al. A broad family of carbon nanomaterials: classification, properties, synthesis, and emerging applications. In: Barhoum A, editor. Handbook of nanofibers. New York City (NY): Springer; 2019. p. 1–40.
  • Xu T, Shen W, Huang W, et al. Fullerene micro/nanostructures: controlled synthesis and energy applications. Mater Today Nano. 2020;11:100081.
  • Lu Q, Wang X, Chen M, et al. Manganese dioxide/ant-nest-like hierarchical porous carbon composite with robust supercapacitive performances. ACS Sustain Chem Eng. 2018;6(6):7362–7371.
  • Benzigar MR, Joseph S, Baskar AV, et al. Ordered mesoporous C70 with highly crystalline pore walls for energy applications. Adv Funct Mater. 2018;28(35):1803701.
  • Qiu L, Feng Y, Zhang X. Review on micro/nano phase change materials for solar thermal applications. Renew Energy. 2019;140:513–538.
  • Rabady RI, Dua'a SM. Thermal conductivity enhancement of sodium thiosulfate pentahydrate by adding carbon nano-tubes/graphite nano-particles. J Energy Storage. 2020;27:101166.
  • Wang W, Tang B, Ju B, et al. Fe3O4-functionalized graphene nanosheet embedded phase change material composites: efficient magnetic-and sunlight-driven energy conversion and storage. J Mater Chem A. 2017;5(3):958–968.
  • Liu Y, Yang Y, Li S. Graphene oxide modified hydrate salt hydrogels: form-stable phase change materials for smart thermal management. J Mater Chem A. 2016;4(46):18134–18143.
  • Xu X, Cui H, Memon SA, et al. Development of novel composite PCM for thermal energy storage using CaCl2·6H2O with graphene oxide and SrCl2·6H2O. Energy Build. 2017;156:163–172.
  • Zhang X, Li X, Zhou Y, et al. Enhanced thermal conductivity in a hydrated salt PCM system with reduced graphene oxide aqueous dispersion. RSC Adv. 2018;8(2):1022–1029.
  • Mehrali M, Ten Elshof JE, Shahi M, et al. Simultaneous solar-thermal energy harvesting and storage via shape stabilized salt hydrate phase change material. Chem Eng J. 2021;405:126624.
  • Ousaleh HA, Sair S, Mansouri S, et al. New hybrid graphene/inorganic salt composites for thermochemical energy storage: synthesis, cyclability investigation and heat exchanger metal corrosion protection performance. Sol Energy Mater Sol Cells. 2020;215:110601.
  • Wang H, Zhang Y, Ci E, et al. An experimental study in full spectra of solar-driven magnesium nitrate hexahydrate/graphene composite phase change materials for solar thermal storage applications. J Energy Storage. 2021;38:102536.
  • Shen Z, Kwon S, Lee HL, et al. Enhanced thermal energy storage performance of salt hydrate phase change material: effect of cellulose nanofibril and graphene nanoplatelet. Sol Energy Mater Sol Cells. 2021;225:111028.
  • Chougan M, Marotta E, Lamastra FR, et al. High performance cementitious nanocomposites: the effectiveness of nano-graphite (nG). Constr Build Mater. 2020;259:119687.
  • Galazutdinova Y, Vega M, Grágeda M, et al. Preparation and characterization of an inorganic magnesium chloride/nitrate/graphite composite for low temperature energy storage. Sol Energy Mater Sol Cells. 2018;175:60–70.
  • Zhou S, Zhou Y, Ling Z, et al. Modification of expanded graphite and its adsorption for hydrated salt to prepare composite PCMs. Appl Therm Eng. 2018;133:446–451.
  • Zou T, Liang X, Wang S, et al. Effect of expanded graphite size on performances of modified CaCl2·6H2O phase change material for cold energy storage. Microporous Mesoporous Mater. 2020;305:110403.
  • Bao X, Yang H, Xu X, et al. Development of a stable inorganic phase change material for thermal energy storage in buildings. Sol Energy Mater Sol Cells. 2020;208:110420.
  • Wu S, Yan T, Kuai Z, et al. Experimental and numerical study of modified expanded graphite/hydrated salt phase change material for solar energy storage. Sol Energy. 2020;205:474–486.
  • Li C, Zhang B, Xie B, et al. Tailored phase change behavior of Na2SO4·10H2O/expanded graphite composite for thermal energy storage. Energy Convers Manage. 2020;208:112586.
  • Salviati S, Carosio F, Cantamessa F, et al. Ice-templated nanocellulose porous structure enhances thermochemical storage kinetics in hydrated salt/graphite composites. Renewable Energy. 2020;160:698–706.
  • Jin X, Xiao Q, Xu T, et al. Thermal conductivity enhancement of a sodium acetate trihydrate–potassium chloride–urea/expanded graphite composite phase–change material for latent heat thermal energy storage. Energy Build. 2021;231:110615.
  • Ren Y, Xu C, Yuan M, et al. Ca(NO3)2-NaNO3/expanded graphite composite as a novel shape-stable phase change material for mid-to high-temperature thermal energy storage. Energy Convers Manage. 2018;163:50–58.
  • Sianipar M, Kim SH, Khoiruddin K, et al. Functionalized carbon nanotube (CNT) membrane: progress and challenges. RSC Adv. 2017;7(81):51175–51198.
  • Bao S, Wei Q, Cao J, et al. Hydrophilic modification of carbon nanotube to prepare a novel porous copper network-carbon nanotube/erythritol composite phase change material. Compos Interfaces. 2021;28(2):175–189.
  • Yang C, Wei H, Guan L, et al. Polymer nanocomposites for energy storage, energy saving, and anticorrosion. J Mater Chem A. 2015;3(29):14929–14941.
  • Kalidasan B, Pandey AK, Shahabuddin S, et al. Synthesis and characterization of conducting polyaniline@ cobalt-paraffin wax nanocomposite as nano-phase change material: enhanced thermophysical properties. Renew Energy. 2021;173:1057–1069.
  • Ju C, Wang Y, He D, et al. Synthesis and infrared property of polyaniline/phase-change nanocapsule composite. J Nanosci Nanotechnol. 2011;11(11):9665–9670.
  • Zeng J, Liu YY, Cao ZX, et al. Thermal conductivity enhancement of MWNTs on the PANI/tetradecanol form-stable PCM. J Therm Anal Calorim. 2008;91(2):443–446.
  • George M, Pandey AK, Abd Rahim N, et al. A novel polyaniline (PANI)/paraffin wax nano composite phase change material: superior transition heat storage capacity, thermal conductivity and thermal reliability. Sol Energy. 2020;204:448–458.
  • Atinafu DG, Ok YS, Kua HW, et al. Thermal properties of composite organic phase change materials (PCMs): a critical review on their engineering chemistry. Appl Therm Eng. 2020;181:115960.
  • Takai-Yamashita C, Shinkai I, Fuji M, et al. Effect of water soluble polymers on formation of Na2SO4 contained SiO2 microcapsules by W/O emulsion for latent heat storage. Adv Powder Technol. 2016;27(5):2032–2038.
  • Xie N, Niu J, Zhong Y, et al. Development of polyurethane acrylate coated salt hydrate/diatomite form-stable phase change material with enhanced thermal stability for building energy storage. Constr Build Mater. 2020;259:119714.
  • Oliver DE, Bissell AJ, Liu X, et al. Crystallisation studies of sodium acetate trihydrate–suppression of incongruent melting and sub-cooling to produce a reliable, high-performance phase-change material. CrystEngComm. 2021;23(3):700–706.
  • Liu Y, Yang Y. Use of nano-α-Al2O3 to improve binary eutectic hydrated salt as phase change material. Sol Energy Mater Sol Cells. 2017;160:18–25.
  • Barhemmati-Rajab N, Zhao W. Investigation into boron nitride nanoparticle effects on thermal properties of calcium chloride hexahydrate (CaCl2·6H2O) as a phase change material. MRS Commun. 2018;8(4):1439–1444.
  • Liang L, Chen X. Preparation and thermal properties of eutectic hydrate salt phase change thermal energy storage material. Int J Photoenergy. 2018;2018:1–9.
  • Jin Z, Tian Y, Xu X, et al. Experimental investigation on graphene oxide/SrCl2·6H2O modified CaCl2·6H2O and the resulting thermal performances. Materials (Basel). 2018;11(9):1507.
  • Zou T, Fu W, Liang X, et al. Hydrophilic modification of expanded graphite to develop form-stable composite phase change material based on modified CaCl2·6H2O. Energy. 2020;190:116473.
  • Yu K, Jin B, Liu Y, et al. Enhanced thermal conductivity of form-stable phase change materials using carbon nanofiber-expanded graphite hybrid structure. Mater Res Express. 2019;6(12):125503.
  • Xiao Q, Fan J, Fang Y, et al. The shape-stabilized light-to-thermal conversion phase change material based on CH3COONa·3H2O as thermal energy storage media. Appl Therm Eng. 2018;136:701–707.
  • Timesnano. [cited 2022 Jan 10]. Available from: http://www.timesnano.com/en/article.php?prt=4,34
  • Solutions, S.-A. [cited 2022 Feb 28]. Available from: https://www.sigmaaldrich.com/MY/en/search/polyaniline-(emeraldine-base)?focus=products&page=1&perpage=30&sort=relevance&term=polyaniline%20%28emeraldine%20base%29&type=product
  • Burger N, Laachachi A, Ferriol M, et al. Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog Polym Sci. 2016;61:1–28.
  • Wu S, Yan T, Kuai Z, et al. Thermal conductivity enhancement on phase change materials for thermal energy storage: a review. Energy Storage Mater. 2020;25:251–295.
  • Zhang P, Meng ZN, Zhu H, et al. Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam. Appl Energy. 2017;185:1971–1983.
  • Abishek S, King AJC, Nadim N, et al. Effect of microstructure on melting in metal-foam/paraffin composite phase change materials. Int J Heat Mass Transfer. 2018;127:135–144.
  • Hussain A, Abidi IH, Tso CY, et al. Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials. Int J Therm Sci. 2018;124:23–35.
  • Liu Y, Yang Y. Form-stable phase change material based on Na2CO3·10H2O-Na2HPO4·12H2O eutectic hydrated salt/expanded graphite oxide composite: the influence of chemical structures of expanded graphite oxide. Renew Energy. 2018;115:734–740.
  • Wu S, Li T, Tong Z, et al. High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting. Adv Mater. 2019;31(49):1905099.
  • Wu S. Heat energy storage and cooling in buildings. In: Hall M, editor. Materials for energy efficiency and thermal comfort in buildings. Cambridge: Elsevier; 2010. p. 101–126.
  • Sharma A, Tyagi VV, Chen CR, et al. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13(2):318–345.
  • Li X, Zhou Y, Nian H, et al. Advanced nanocomposite phase change material based on calcium chloride hexahydrate with aluminum oxide nanoparticles for thermal energy storage. Energy Fuels. 2017;31(6):6560–6567.
  • Kardam A, Narayanan SS, Bhardwaj N, et al. Ultrafast thermal charging of inorganic nano-phase change material composites for solar thermal energy storage. RSC Adv. 2015;5(70):56541–56548.
  • Zhang J, Wang SS, Zhang SD, et al. In situ synthesis and phase change properties of Na2SO4·10H2O@ SiO2 solid nanobowls toward smart heat storage. J Phys Chem C. 2011;115(41):20061–20066.
  • O’Connor JP, Weber RM. Thermal management of electronic packages using solid-to-liquid phase change techniques; 1997.
  • Zhang S, Wu W, Wang S. Experimental investigations of alum/expanded graphite composite phase change material for thermal energy storage and its compatibility with metals. Energy. 2018;161:508–516.
  • Liu Z, Chen Z, Yu F. Preparation and characterization of microencapsulated phase change materials containing inorganic hydrated salt with silica shell for thermal energy storage. Sol Energy Mater Sol Cells. 2019;200:110004.
  • Tyagi V, Buddhi D. Thermal cycle testing of calcium chloride hexahydrate as a possible PCM for latent heat storage. Sol Energy Mater Sol Cells. 2008;92(8):891–899.
  • Hu P, Lu D-J, Fan X-Y, et al. Phase change performance of sodium acetate trihydrate with AlN nanoparticles and CMC. Sol Energy Mater Sol Cells. 2011;95(9):2645–2649.
  • Bell S, Steinberg T, Will G. Corrosion mechanisms in molten salt thermal energy storage for concentrating solar power. Renew Sustain Energy Rev. 2019;114:109328.
  • Ding W, Gomez-Vidal J, Bonk A, et al. Molten chloride salts for next generation CSP plants: electrolytical salt purification for reducing corrosive impurity level. Sol Energy Mater Sol Cells. 2019;199:8–15.
  • Ding W, Bonk A, Bauer T. Molten chloride salts for next generation CSP plants: selection of promising chloride salts & study on corrosion of alloys in molten chloride salts. In: Richter C, editor. AIP conference proceedings. Morocco: AIP; 2019. p. 1–9.
  • García-Romero A, Delgado A, Urresti A, et al. Corrosion behaviour of several aluminium alloys in contact with a thermal storage phase change material based on Glauber’s salt. Corros Sci. 2009;51(6):1263–1272.
  • Kumar N, Chavez R, Banerjee D. Experimental measurement of corrosion involving inorganics (salt hydrates) phase change materials (PCM) for thermal energy storage (TES) applications). In: Brunschwiler T, editor. 17th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems (ITherm). San Diego: IEEE; 2018. p. 73–77.
  • Liu C, Wang C, Li Y, et al. Preparation and characterization of sodium thiosulfate pentahydrate/silica microencapsulated phase change material for thermal energy storage. RSC Adv. 2017;7(12):7238–7249.
  • Cui W, Yuan Y, Sun L, et al. Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials. Renew Energy. 2016;99:1029–1037.
  • Xiao Q, Zhang M, Fan J, et al. Thermal conductivity enhancement of hydrated salt phase change materials employing copper foam as the supporting material. Sol Energy Mater Sol Cells. 2019;199:91–98.
  • Li X, Zhou Y, Nian H, et al. Preparation and thermal energy storage studies of CH3COONa·3H2O–KCl composites salt system with enhanced phase change performance. Appl Therm Eng. 2016;102:708–715.
  • He Y, Zhang N, Yuan Y, et al. Improvement of supercooling and thermal conductivity of the sodium acetate trihydrate for thermal energy storage with α-Fe2O3 as addictive. J Therm Anal Calorim. 2018;133(2):859–867.
  • Mao J, Dong X, Hou P, et al. Preparation research of novel composite phase change materials based on sodium acetate trihydrate. Appl Therm Eng. 2017;118:817–825.
  • Mao J, Hou P, Liu R, et al. Preparation and thermal properties of SAT-CMC-DSP/EG composite as phase change material. Appl Therm Eng. 2017;119:585–592.
  • Fashandi M, Leung SN. Sodium acetate trihydrate-chitin nanowhisker nanocomposites with enhanced phase change performance for thermal energy storage. Sol Energy Mater Sol Cells. 2018;178:259–265.
  • Fang Y, Ding Y, Tang Y, et al. Thermal properties enhancement and application of a novel sodium acetate trihydrate-formamide/expanded graphite shape-stabilized composite phase change material for electric radiant floor heating. Appl Therm Eng. 2019;150:1177–1185.
  • Fu W, Lu Y, Zhang R, et al. Developing NaAc·3H2O-based composite phase change material using glycine as temperature regulator and expanded graphite as supporting material for use in floor radiant heating. J Mol Liq. 2020;317:113932.
  • Kazemi A, Naseri I, Nasiri M, et al. Effect of MgCl2·6H2O phase change material on thermal insulation performance of carbon aerogels. J Energy Storage. 2017;9:59–68.
  • Huang J, Dai J, Peng S, et al. Modification on hydrated salt-based phase change composites with carbon fillers for electronic thermal management. Int J Energy Res. 2019;43(8):3550–3560.
  • Wu Y, Wang T. Hydrated salts/expanded graphite composite with high thermal conductivity as a shape-stabilized phase change material for thermal energy storage. Energy Convers Manage. 2015;101:164–171.
  • Wang T, Wu N, Li H, et al. Preparation and properties of a form-stable phase-change hydrogel for thermal energy storage. J Appl Polym Sci. 2016;133(34):43836.
  • Liu Y, Yu K, Gao X, et al. Enhanced thermal properties of hydrate salt/poly (acrylate sodium) copolymer hydrogel as form-stable phase change material via incorporation of hydroxyl carbon nanotubes. Sol Energy Mater Sol Cells. 2020;208:110387.
  • Zhang S, Chen F, Pan W, et al. Development of heat transfer enhancement of a novel composite phase change material with adjustable phase change temperature. Sol Energy Mater Sol Cells. 2020;210:110457.
  • Ma Y, Lei B, Liu Y, et al. Effects of additives on the subcooling behavior of Al2(SO4)3⋅18H2O phase transition. Appl Therm Eng. 2016;99:189–194.
  • Xiao Q, Yuan W, Li L, et al. Fabrication and characteristics of composite phase change material based on Ba(OH)2·8H2O for thermal energy storage. Sol Energy Mater Sol Cells. 2018;179:339–345.
  • Ye R, Lin W, Yuan K, et al. Experimental and numerical investigations on the thermal performance of building plane containing CaCl2·6H2O/expanded graphite composite phase change material. Appl Energy. 2017;193:325–335.
  • Fu L, Wang Q, Ye R, et al. A calcium chloride hexahydrate/expanded perlite composite with good heat storage and insulation properties for building energy conservation. Renew Energy. 2017;114:733–743.
  • Yuan K, Zhou Y, Sun W, et al. A polymer-coated calcium chloride hexahydrate/expanded graphite composite phase change material with enhanced thermal reliability and good applicability. Compos Sci Technol. 2018;156:78–86.
  • Huang R, Feng J, Ling Z, et al. A sodium acetate trihydrate-formamide/expanded perlite composite with high latent heat and suitable phase change temperatures for use in building roof. Constr Build Mater. 2019;226:859–867.
  • Liu J, Zhu C, Liang W, et al. Experimental investigation on micro-scale phase change material based on sodium acetate trihydrate for thermal storage. Sol Energy. 2019;193:413–421.
  • Zhang X, Li X, Zhou Y, et al. Calcium chloride hexahydrate/diatomite/paraffin as composite shape-stabilized phase-change material for thermal energy storage. Energy Fuels. 2018;32(1):916–921.
  • Rao Z, Zhang G, Xu T, et al. Experimental study on a novel form-stable phase change materials based on diatomite for solar energy storage. Sol Energy Mater Sol Cells. 2018;182:52–60.
  • Munyalo JM, Zhang X, Xu X. Experimental investigation on supercooling, thermal conductivity and stability of nanofluid based composite phase change material. J Energy Storage. 2018;17:47–55.
  • Han X, Zhang X, Hua W, et al. Preparation and application of composite EG/Ba(OH)2·8H2O form-stable phase change material for solar thermal storage. Int J Energy Res. 2019;43(6):2227–2240.
  • Lin J, Zhao Q, Huang H, et al. Applications of low-temperature thermochemical energy storage systems for salt hydrates based on material classification: a review. Sol Energy. 2021;214:149–178.
  • Liu L, Li J, Deng Y, et al. Optimal design of multi-layer structure composite containing inorganic hydrated salt phase change materials and cement: lab-scale tests for buildings. Constr Build Mater. 2021;275:122125.
  • Kant K, Shukla A, Sharma A, et al. Heat transfer study of phase change materials with graphene nano particle for thermal energy storage. Sol Energy. 2017;146:453–463.
  • Ye R, Zhang C, Sun W, et al. Novel wall panels containing CaCl2·6H2O-Mg(NO3)2·6H2O/expanded graphite composites with different phase change temperatures for building energy savings. Energy Build. 2018;176:407–417.
  • Sutton R, Jewell E, Elvins J, et al. Characterising the discharge cycle of CaCl2 and LiNO3 hydrated salts within a vermiculite composite scaffold for thermochemical storage. Energy Build. 2018;162:109–120.
  • Fu L, Ling Z, Fang X, et al. Thermal performance of CaCl2·6H2O/expanded perlite composite phase change boards embedded in aluminous gusset plates for building energy conservation. Energy Build. 2017;155:484–491.
  • Bland A, Khzouz M, Statheros T, et al. PCMs for residential building applications: a short review focused on disadvantages and proposals for future development. Buildings. 2017;7(3):78.
  • Tan P, Lindberg P, Eichler K, et al. Thermal energy storage using phase change materials: techno-economic evaluation of a cold storage installation in an office building. Appl Energy. 2020;276:115433.
  • Zhongming Z, Linong L, Xiaona Y, et al. New textile could keep you cool in the heat, warm in the cold; 2020.
  • Pause B. Phase change materials and their application in coatings and laminates for textiles. In: Smith W, editor. Smart textile coatings and laminates. Cambridge: Elsevier; 2010. p. 236–250.
  • Fonseca A, Mayor T, Campos J. Guidelines for the specification of a PCM layer in firefighting protective clothing ensembles. Appl Therm Eng. 2018;133:81–96.
  • Wan X, Wang F. Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans. Int J Heat Mass Transfer. 2018;126:636–648.
  • Ying B-a, Kwok Y-l, Li Y, et al. Assessing the performance of textiles incorporating phase change materials. Polym Test. 2004;23(5):541–549.
  • Mondal S. Phase change materials for smart textiles – an overview. Appl Therm Eng. 2008;28(11–12):1536–1550.
  • Huang J, Sun W, Zhang Z, et al. Thermal protection of electronic devices based on thermochemical energy storage. Appl Therm Eng. 2021;186:116507.
  • Alimohammadi M, Aghli Y, Alavi ES, et al. Experimental investigation of the effects of using nano/phase change materials (NPCM) as coolant of electronic chipsets, under free and forced convection. Appl Therm Eng. 2017;111:271–279.
  • Memon SA, Sajid MB, Malik MS, et al. Investigation of the thermal performance of salt hydrate phase change of nanoparticle slurry flow in a microchannel. J Chem. 2019;2019:1–10.
  • Burow D, Sergeeva K, Calles S, et al. Inhomogeneous degradation of graphite anodes in automotive lithium ion batteries under low-temperature pulse cycling conditions. J Power Sources. 2016;307:806–814.
  • Nagasubramanian G. Electrical characteristics of 18650 Li-ion cells at low temperatures. J Appl Electrochem. 2001;31(1):99–104.
  • Bandhauer TM, Garimella S, Fuller TF. A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc. 2011;158(3):R1.
  • Subramanian M, Hoang AT, Kalidasan B, et al. A technical review on composite phase change material based secondary assisted battery thermal management system for electric vehicles. J Cleaner Prod. 2021;322:129079.
  • Park H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles. J Power Sources. 2013;239:30–36.
  • Chen D, Jiang J, Kim G-H, et al. Comparison of different cooling methods for lithium ion battery cells. Appl Therm Eng. 2016;94:846–854.
  • Li J, Zhu Z. Battery thermal management systems of electric vehicles; 2014.
  • Luo J, Zou D, Wang Y, et al. Battery thermal management systems (BTMs) based on phase change material (PCM): a comprehensive review. Chem Eng J. 2021;430:132741.
  • Cao J, Ling Z, Lin S, et al. Thermochemical heat storage system for preventing battery thermal runaway propagation using sodium acetate trihydrate/expanded graphite. Chem Eng J. 2021;433:133536.
  • Ling Z, Li S, Cai C, et al. Battery thermal management based on multiscale encapsulated inorganic phase change material of high stability. Appl Therm Eng. 2021;193:117002.
  • Ling Z, Luo M, Song J, et al. A fast-heat battery system using the heat released from detonated supercooled phase change materials. Energy. 2021;219:119496.
  • Galazutdinova Y, Ushak S, Farid M, et al. Development of the inorganic composite phase change materials for passive thermal management of Li-ion batteries: application. J Power Sources. 2021;491:229624.
  • Ramandi M, Dincer I, Naterer G. Heat transfer and thermal management of electric vehicle batteries with phase change materials. Heat Mass Transfer. 2011;47(7):777–788.
  • Lei S, Shi Y, Chen G. A lithium-ion battery-thermal-management design based on phase-change-material thermal storage and spray cooling. Appl Therm Eng. 2020;168:114792.
  • Nazari MA, Maleki A, Assad M, et al. A review of nanomaterial incorporated phase change materials for solar thermal energy storage. Sol Energy. 2021;228:725–743.
  • Varol Y, Koca A, Oztop HF, et al. Forecasting of thermal energy storage performance of phase change material in a solar collector using soft computing techniques. Expert Syst Appl. 2010;37(4):2724–2732.
  • Santhi Rekha S, Sukchai S. Design of phase change material based domestic solar cooking system for both indoor and outdoor cooking applications. J Sol Energy Eng. 2018;140(4):1–8.
  • Tamme R, Bauer T, Buschle J, et al. Latent heat storage above 120°C for applications in the industrial process heat sector and solar power generation. Int J Energy Res. 2008;32(3):264–271.
  • Guerraiche D, Bougriou C, Guerraiche K, et al. Experimental and numerical study of a solar collector using phase change material as heat storage. J Energy Storage. 2020;27:101133.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.