2,255
Views
3
CrossRef citations to date
0
Altmetric
Full Critical Review

Ceramic-based electromagnetic wave absorbing materials and concepts towards lightweight, flexibility and thermal resistance

, , , , , & show all
Pages 487-520 | Received 18 Nov 2020, Accepted 05 May 2022, Published online: 06 Jun 2022

References

  • Shahzad F, Alhabeb M, Hatter CB, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science. 2016;353(6304):1137–1140.
  • Zhang Y, Huang Y, Zhang T, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv Mater. 2015;27(12):2049–2053.
  • Li Q, Zhang Z, Qi L, et al. Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv Sci. 2019;6(8):1801057–1801080.
  • Tian X, Meng F, Meng F, et al. Synergistic enhancement of microwave absorption using hybridized polyaniline@helical CNTs with dual chirality. ACS Appl Mater Interfaces. 2017;9(18):15711–15718.
  • Narendra J, Harnadek M. xGnP for electromagnetic interference shielding application. XG Sci. 2012;5:1–11.
  • Liu X, Wang L-S, Ma Y, et al. Enhanced microwave absorption properties by tuning cation deficiency of perovskite oxides of two-dimensional LaFeO3/C composite in X-band. ACS Appl Mater Interfaces. 2017;9(8):7601–7610.
  • Liu Q, Cao Q, Bi H, et al. Coni@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv Mater. 2016;28(3):486–490.
  • Dai B, Zhao B, Xie X, et al. Novel two-dimensional Ti3C2Tx MXenes/nano-carbon sphere hybrids for high-performance microwave absorption. J Mater Chem C. 2018;6(21):5690–5697.
  • IEEE. IEEE international electromagnetic compatibility symposium record. 1973 IEEE International Electromagnetic Compatibility Symposium Record, 1973 Jun 20–22; Group, I., Ed. 1973; p. 1–14.
  • Johnson PL. Electromagnetic compatibility: compliance with emerging regulations; 1997.
  • Assembly P. The potential dangers of electromagnetic fields and their effect on the environment. European Parliament. 2011.
  • Sessions PHP. Avoiding potential risks of electromagnetic fields. European Parliament. 2009.
  • Parliament E. Directive 2013/35/EU of the European Parliament and of the Council of 26 June 2013 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields). Official J Eur Union. 2009;179:1–21.
  • Sankaran S, Deshmukh K, Ahamed MB, et al. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos Part A Appl Sci Manuf. 2018;114:49–71.
  • Meng F, Wang H, Huang F, et al. Graphene-based microwave absorbing composites: a review and prospective. Compos Part B Eng. 2018;137:260–277.
  • Lv H, Yang Z, Xu H, et al. An electrical switch-driven flexible electromagnetic absorber. Adv Funct Mater. 2020;30(4):1907251–1907259.
  • Lee DW, Park J, Kim BJ, et al. Enhancement of electromagnetic interference shielding effectiveness with alignment of spinnable multiwalled carbon nanotubes. Carbon. 2019;142:528–534.
  • Cao M-S, Cai Y-Z, He P, et al. 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem Eng J. 2019;359:1265–1302.
  • Cheng H, Wei S, Ji Y, et al. Synergetic effect of Fe3O4 nanoparticles and carbon on flexible poly (vinylidence fluoride) based films with higher heat dissipation to improve electromagnetic shielding. Compos Part A Appl Sci Manuf. 2019;121:139–148.
  • Li N, Xie X, Lu H, et al. Novel two-dimensional Ti3C2TX/Ni-spheres hybrids with enhanced microwave absorption properties. Ceram Int. 2019;45(17, Part B):22880–22888.
  • Shen Z, Chen J, Li B, et al. Recent progress in SiC nanowires as electromagnetic microwaves absorbing materials. J Alloys Compd. 2020;815:152388–152402.
  • Wang Y, Du Y, Xu P, et al. Recent advances in conjugated polymer-based microwave absorbing materials. Polymers. 2017;9(1):1–28.
  • Zhao H, Cheng Y, Liu W, et al. Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 2019;11(1):1–17.
  • Bhattacharjee Y, Arief I, Bose S. Recent trends in multi-layered architectures towards screening electromagnetic radiation: challenges and perspectives. J Mater Chem C. 2017;5(30):7390–7403.
  • Bai T, Guo Y, Liu H, et al. Achieving enhanced electromagnetic shielding and absorption capacity of cellulose-derived carbon aerogels via tuning the carbonization temperature. J Mater Chem C. 2020;8(15):5191–5201.
  • Yang M, Yuan Y, Li Y, et al. Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework. Carbon. 2020;161:517–527.
  • Elhassan A, Abdalla I, Yu J, et al. Microwave-assisted fabrication of sea cucumber-like hollow structured composite for high-performance electromagnetic wave absorption. Chem Eng J. 2020;392:123646–123656.
  • Li C, Sui J, Jiang X, et al. Efficient broadband electromagnetic wave absorption of flower-like nickel/carbon composites in 2-40 GHz. Chem Eng J. 2020;385:123882–123893.
  • Liu D, Du Y, Wang F, et al. MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon. 2020;157:478–485.
  • Wu G, Zhang H, Luo X, et al. Investigation and optimization of Fe/ZnFe2O4 as a wide-band electromagnetic absorber. J Colloid Interface Sci. 2019;536:548–555.
  • Hou T, Wang B, Jia Z, et al. A review of metal oxide-related microwave absorbing materials from the dimension and morphology perspective. J Mater Sci Mater Electron. 2019;30(12):10961–10984.
  • Jiang D, Murugadoss V, Wang Y, et al. Electromagnetic interference shielding polymers and nanocomposites – a review. Polym Rev. 2019;59(2):280–337.
  • Kong LB, Li ZW, Liu L, et al. Recent progress in some composite materials and structures for specific electromagnetic applications. Int Mater Rev. 2013;58(4):203–259.
  • Jia Z, Lan D, Lin K, et al. Progress in low-frequency microwave absorbing materials. J Mater Sci Mater Electron. 2018;29(20):17122–17136.
  • Qin F, Brosseau C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys. 2012;111(6):061301–061325.
  • Quan B, Liang X, Ji G, et al. Dielectric polarization in electromagnetic wave absorption: review and perspective. J Alloys Compd. 2017;728:1065–1075.
  • Wang C, Murugadoss V, Kong J, et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon. 2018;140:696–733.
  • Yin X, Kong L, Zhang L, et al. Electromagnetic properties of Si-C-N based ceramics and composites. Int Mater Rev. 2014;59(6):326–355.
  • Yang H, Ye T, Lin Y, et al. Microwave absorbing properties of the ferrite composites based on graphene. J Alloys Compd. 2016;683:567–574.
  • Chandra Babu Naidu K, Madhuri W. Microwave processed bulk and nano NiMg ferrites: a comparative study on X-band electromagnetic interference shielding properties. Mater Chem Phys. 2017;187:164–176.
  • Li L, Chen K, Liu H, et al. Attractive microwave-absorbing properties of M-BaFe12O19 ferrite. J Alloys Compd. 2013;557:11–17.
  • Zhu W, Wang L, Zhao R, et al. Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals. Nanoscale. 2011;3(7):2862–2864.
  • Xie J, Han M, Chen L, et al. Microwave-absorbing properties of NiCoZn spinel ferrites. J Magn Magn Mater. 2007;314(1):37–42.
  • Xiong J, Xiang Z, Zhao J, et al. Layered NiCo alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance. Carbon. 2019;154:391–401.
  • Liu X, Hao C, Jiang H, et al. Hierarchical NiCo2O4/Co3O4/NiO porous composite: a lightweight electromagnetic wave absorber with tunable absorbing performance. J Mater Chem C. 2017;5(15):3770–3778.
  • Wu H, Qin M, Zhang L. NiCo2O4 constructed by different dimensions of building blocks with superior electromagnetic wave absorption performance. Compos Part B Eng. 2020;182:107620–107630.
  • Qin M, Liang H, Zhao X, et al. Filter paper templated one-dimensional NiO/NiCo2O4 microrod with wideband electromagnetic wave absorption capacity. J Colloid Interface Sci. 2020;566:347–356.
  • Yang CC, Gung YJ, Hung WC, et al. Infrared and microwave absorbing properties of BaTiO3/polyaniline and BaFe12O19/polyaniline composites. Compos Sci Technol. 2010;70(3):466–471.
  • Hosseini SH, Mohseni SH, Asadnia A, et al. Synthesis and microwave absorbing properties of polyaniline/MnFe2O4 nanocomposite. J Alloys Compd. 2011;509(14):4682–4687.
  • Wei J, Liu J, Li S. Electromagnetic and microwave absorption properties of Fe3O4 magnetic films plated on hollow glass spheres. J Magn Magn Mater. 2007;312(2):414–417.
  • Wang L, Guan Y, Qiu X, et al. Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal-organic framework. Chem Eng J. 2017;326:945–955.
  • Feng Y, Qiu T. Preparation, characterization and microwave absorbing properties of FeNi alloy prepared by gas atomization method. J Alloys Compd. 2012;513:455–459.
  • Li X, Han X, Tan Y, et al. Preparation and microwave absorption properties of Ni-B alloy-coated Fe3O4 particles. J Alloys Compd. 2008;464(1):352–356.
  • Bibi M, Abbas SM, Ahmad N, et al. Microwaves absorbing characteristics of metal ferrite/multiwall carbon nanotubes nanocomposites in X-band. Compos Part B Eng. 2017;114:139–148.
  • Wang J, Wang J, Xu R, et al. Enhanced microwave absorption properties of epoxy composites reinforced with Fe50Ni50-functionalized graphene. J Alloys Compd. 2015;653:14–21.
  • Lakshmi K, John H, Mathew KT, et al. Microwave absorption, reflection and EMI shielding of PU-PANI composite. Acta Mater. 2009;57(2):371–375.
  • Munir A. Microwave radar absorbing properties of multiwalled carbon nanotubes polymer composites: a review. Adv Polym Technol. 2017;36(3):362–370.
  • Ohlan A, Singh K, Chandra A, et al. Microwave absorption behavior of core-shell structured poly (3,4-ethylenedioxy thiophene)-barium ferrite nanocomposites. ACS Appl Mater Interfaces. 2010;2(3):927–933.
  • Zhang X-J, Wang G-S, Cao W-Q, et al. Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl Mater Interfaces. 2014;6(10):7471–7478.
  • Chiu S-C, Yu H-C, Li Y-Y. High electromagnetic wave absorption performance of silicon carbide nanowires in the gigahertz range. J Phys Chem C. 2010;114(4):1947–1952.
  • Kassiba A, Tabellout M, Charpentier S, et al. Conduction and dielectric behaviour of SiC nano-sized materials. Solid State Commun. 2000;115(7):389–393.
  • Li X, Zhang L, Yin X, et al. Effect of chemical vapor infiltration of SiC on the mechanical and electromagnetic properties of Si3N4-SiC ceramic. Scr Mater. 2010;63(6):657–660.
  • Zhang B, Li J, Sun J, et al. Nanometer silicon carbide powder synthesis and its dielectric behavior in the GHz range. J Eur Ceram Soc. 2002;22(1):93–99.
  • Yang H, Cao M, Li Y, et al. Enhanced dielectric properties and excellent microwave absorption of SiC powders driven with NiO nanorings. Adv Opt Mater. 2014;2(3):214–219.
  • Jian X, Tian W, Li J, et al. High-Temperature oxidation-resistant ZrN0.4B0.6/SiC nanohybrid for enhanced microwave absorption. ACS Appl Mater Interfaces. 2019;11(17):15869–15880.
  • Hou Y, Cheng L, Zhang Y, et al. Enhanced flexibility and microwave absorption properties of HfC/SiC nanofiber mats. ACS Appl Mater Interfaces. 2018;10(35):29876–29883.
  • Hou Y, Cheng L, Zhang Y, et al. Electrospinning of Fe/SiC hybrid fibers for highly efficient microwave absorption. ACS Appl Mater Interfaces. 2017;9(8):7265–7271.
  • Wei S, Guan L, Song B, et al. Seeds-induced synthesis of SiC by microwave heating. Ceram Int. 2019;45(8):9771–9775.
  • Li M, Yin X, Zheng G, et al. High-temperature dielectric and microwave absorption properties of Si3N4-SiC/SiO2 composite ceramics. J Mater Sci. 2015;50(3):1478–1487.
  • Zhou W, Yin R-m, Long L, et al. Enhanced high-temperature dielectric properties and microwave absorption of SiC nanofibers modified Si3N4 ceramics within the gigahertz range. Ceram Int. 2018;44(11):12301–12307.
  • Ye F, Song Q, Zhang Z, et al. Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv Funct Mater. 2018;28(17):1707205–1707215.
  • Zheng G, Yin X, Wang J, et al. Complex permittivity and microwave absorbing property of Si3N4-SiC composite ceramic. J Mater Sci Technol. 2012;28(8):745–750.
  • Luo H, Chen W, Zhou W, et al. Carbon fiber/Si3N4 composites with SiC nanofiber interphase for enhanced microwave absorption properties. Ceram Int. 2017;43(15):12328–12332.
  • Zhu J, Wei S, Zhang L, et al. Electrical and dielectric properties of polyaniline-Al2O3 nanocomposites derived from various Al2O3 nanostructures. J Mater Chem. 2011;21(11):3952–3959.
  • Wang Y, Luo F, Wei P, et al. Enhanced dielectric properties and high-temperature microwave absorption performance of Zn-doped Al2O3 ceramic. J Electron Mater. 2015;44(7):2353–2358.
  • Mei H, Zhao X, Zhou S, et al. 3D-printed oblique honeycomb Al2O3/SiCw structure for electromagnetic wave absorption. Chem Eng J. 2019;372:940–945.
  • Zhou L, Su G, Wang H, et al. Influence of NiCrAlY content on dielectric and microwave absorption properties of NiCrAlY/Al2O3 composite coatings. J Alloys Compd. 2019;777:478–484.
  • Wang Y, Lai Y, Wang S, et al. Controlled synthesis and electromagnetic wave absorption properties of core-shell Fe3O4@SiO2 nanospheres decorated graphene. Ceram Int. 2017;43(2):1887–1894.
  • Liu X, Chen Y, Hao C, et al. Graphene-enhanced microwave absorption properties of Fe3O4/SiO2 nanorods. Compos Part A App Sci Manuf. 2016;89:40–46.
  • Chen M, Zhu Y, Pan Y, et al. Gradient multilayer structural design of CNTs/SiO2 composites for improving microwave absorbing properties. Mater Des. 2011;32(5):3013–3016.
  • Li S, Huang Y, Zhang N, et al. Synthesis of polypyrrole decorated FeCo@SiO2 as a high-performance electromagnetic absorption material. J Alloys Compd. 2019;774:532–539.
  • Duan W, Yin X, Ye F, et al. Synthesis and EMW absorbing properties of nano SiC modified PDC-SiOC. J Mater Chem C. 2016;4(25):5962–5969.
  • Du B, He C, Shui A, et al. Microwave-absorption properties of heterostructural SiC nanowires/SiOC ceramic derived from polysiloxane. Ceram Int. 2019;45(1):1208–1214.
  • Duan W, Yin X, Li Q, et al. Synthesis and microwave absorption properties of SiC nanowires reinforced SiOC ceramic. J Eur Ceram Soc. 2014;34(2):257–266.
  • Duan W, Yin X, Luo C, et al. Microwave-absorption properties of SiOC ceramics derived from novel hyperbranched ferrocene-containing polysiloxane. J Eur Ceram Soc. 2017;37(5):2021–2030.
  • Qin H, Liu Y, Ye F, et al. Dielectric and microwave absorption properties of SiCnw-SiBCN composite ceramics deposited via chemical vapor infiltration. J Alloys Compd. 2019;771:747–754.
  • Ye F, Zhang L, Yin X, et al. Dielectric and EMW absorbing properties of PDCs-SiBCN annealed at different temperatures. J Eur Ceram Soc. 2013;33(8):1469–1477.
  • Ye F, Zhang L, Yin X, et al. Dielectric and microwave-absorption properties of SiC nanoparticle/SiBCN composite ceramics. J Eur Ceram Soc. 2014;34(2):205–215.
  • Luo C, Jiao T, Gu J, et al. Graphene shield by SiBCN ceramic: a promising high-temperature electromagnetic wave-absorbing material with oxidation resistance. ACS Appl Mater Interfaces. 2018;10(45):39307–39318.
  • Zhu Y-F, Zhang L, Natsuki T, et al. Facile synthesis of BaTiO3 nanotubes and their microwave absorption properties. ACS Appl Mater Interfaces. 2012;4(4):2101–2106.
  • Yang J, Zhang J, Liang C, et al. Ultrathin BaTiO3 nanowires with high aspect ratio: a simple one-step hydrothermal synthesis and their strong microwave absorption. ACS Appl Mater Interfaces. 2013;5(15):7146–7151.
  • Huang X, Chen Z, Tong L, et al. Preparation and microwave absorption properties of BaTiO3@MWCNTs core/shell heterostructure. Mater Lett. 2013;111:24–27.
  • Shi G-M, Li Y-F, Ai L, et al. Two step synthesis and enhanced microwave absorption properties of polycrystalline BaTiO3 coated Ni nanocomposites. J Alloys Compd. 2016;680:735–743.
  • Liu Y, Luo F, Zhou W, et al. Dielectric and microwave absorption properties of Ti3SiC2 powders. J Alloys Compd. 2013;576:43–47.
  • Liu Y, Su X, Luo F, et al. Facile synthesis and microwave absorption properties of double loss Ti3SiC2/Co3Fe7 powders. Ceram Int. 2018;44(2):1995–2001.
  • Liu Y, Luo F, Wang Y, et al. Influences of milling on the dielectric and microwave absorption properties of Ti3SiC2/cordierite composite ceramics. J Alloys Compd. 2015;629:208–213.
  • Liu Y, Luo F, Su J, et al. Dielectric and microwave absorption properties of Ti3SiC2/cordierite composite ceramics oxidized at high temperature. J Alloys Compd. 2015;632:623–628.
  • Rao CNR, Gopalakrishnan K. Borocarbonitrides, BxCyNz: synthesis, characterization, and properties with potential applications. ACS Appl Mater Interfaces. 2017;9(23):19478–19494.
  • Zhang T, Zeng S, Wen G, et al. Novel carbon nanofibers build boron carbonitride porous architectures with microwave absorption properties. Microporous Mesoporous Mater. 2015;211:142–146.
  • Zhang T, Zhang J, Luo H, et al. Facile approach to fabricate BCN/Fex(B/C/N)y nano-architectures with enhanced electromagnetic wave absorption. Nanotechnology. 2018;29(23):235701–235712.
  • Zhao Z, Jia Z, Wu H, et al. Morphology-dependent electromagnetic wave absorbing properties of iron-based absorbers: one-dimensional, two-dimensional, and three-dimensional classification. The Euro Phys J Appl Phys. 2019;87(2):20901–20920.
  • Jia Y, Chowdhury MAR, Zhang D, et al. Wide-band tunable microwave-absorbing ceramic composites made of polymer-derived SiOC ceramic and in situ partially surface-oxidized ultra-high-temperature ceramics. ACS Appl Mater Interfaces. 2019;11(49):45862–45874.
  • Liu Z, Bai G, Huang Y, et al. Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites. J Phys Chem C. 2007;111(37):13696–13700.
  • Ma Z, Zhang Y, Cao C, et al. Attractive microwave absorption and the impedance match effect in zinc oxide and carbonyl iron composite. Phys B. 2011;406(24):4620–4624.
  • Abdi MM, Kassim AB, Ekramul Mahmud HNM, et al. Electromagnetic interference shielding effectiveness of new conducting polymer composite. J Macromol Sci, Part A. 2009;47(1):71–75.
  • Ren F, Yu H, Wang L, et al. Current progress on the modification of carbon nanotubes and their application in electromagnetic wave absorption. RSC Adv. 2014;4(28):14419–14431.
  • Lu M-M, Cao W-Q, Shi H-L, et al. Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J Mater Chem A. 2014;2(27):10540–10547.
  • Wen B, Cao M-S, Hou Z-L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon. 2013;65:124–139.
  • Dakin TW. Conduction and polarization mechanisms and trends in dielectric. IEEE Electr Insul Mag. 2006;22(5):11–28.
  • Ding D, Wang Y, Li X, et al. Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon. 2017;111:722–732.
  • Ohlan A, Singh K, Chandra A, et al. Microwave absorption behavior of core−shell structured poly (3,4-ethylenedioxy thiophene)−barium ferrite nanocomposites. ACS Appl Mater Interfaces. 2010;2(3):927–933.
  • Zhu J, Gu H, Luo Z, et al. Carbon nanostructure-derived polyaniline metacomposites: electrical, dielectric, and giant magnetoresistive properties. Langmuir. 2012;28(27):10246–10255.
  • Phang S-W, Hino T, Abdullah MH, et al. Applications of polyaniline doubly doped with p-toluene sulphonic acid and dichloroacetic acid as microwave absorbing and shielding materials. Mater Chem Phys. 2007;104(2):327–335.
  • Sun K, Xie P, Wang Z, et al. Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer. 2017;125:50–57.
  • Zhou Y, Wang N, Qu X, et al. Arc-discharge synthesis of nitrogen-doped C embedded TiCN nanocubes with tunable dielectric/magnetic properties for electromagnetic absorbing applications. Nanoscale. 2019;11(42):19994–20005.
  • Koops CG. On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys Rev. 1951;83(1):121–124.
  • González M, Pozuelo J, Baselga J. Electromagnetic shielding materials in GHz range. Chem Rec. 2018;18(7–8):1000–1009.
  • Meng F, Wei W, Chen X, et al. Design of porous C@Fe3O4 hybrid nanotubes with excellent microwave absorption. Phys Chem Chem Phys. 2016;18(4):2510–2516.
  • Wu M, Zhang YD, Hui S, et al. Microwave magnetic properties of Co50/(SiO2)50 nanoparticles. Appl Phys Lett. 2002;80(23):4404–4406.
  • Wu T, Liu Y, Zeng X, et al. Facile hydrothermal synthesis of Fe3O4/C core-shell nanorings for efficient low-frequency microwave absorption. ACS Appl Mater Interfaces. 2016;8(11):7370–7380.
  • Lu B, Dong XL, Huang H, et al. Microwave absorption properties of the core/shell-type iron and nickel nanoparticles. J Magn Magn Mater. 2008;320(6):1106–1111.
  • Zhao Y, Liu L, Jiang K, et al. Distinctly enhanced permeability and excellent microwave absorption of expanded graphite/Fe3O4 nanoring composites. RSC Adv. 2017;7(19):11561–11567.
  • Kim S-S, Kim S-T, Yoon Y-C, et al. Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies. J Appl Phys. 2005;97(10):10F905–10F908.
  • Gao B, Qiao L, Wang J, et al. Microwave absorption properties of the Ni nanowires composite. J Phys D Appl Phys. 2008;41(23):235005–235010.
  • Micheli D, Pastore R, Vricella A, et al. Electromagnetic characterization of materials by vector network analyzer experimental setup. In: Zachariah AK, Mishra RK, Thomas R, editors. Spectroscopic methods for nanomaterials characterization. Amsterdam: Elsevier; 2017. p. 195–236.
  • Michielssen E, Sajer J, Ranjithan S, et al. Design of lightweight, broad-band microwave absorbers using genetic algorithms. IEEE Trans Microwave Theory Tech. 1993;41(6):1024–1031.
  • Lv H, Ji G, Liang X, et al. A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties. J Mater Chem C. 2015;3(19):5056–5064.
  • Du Y, Liu W, Qiang R, et al. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl Mater Interfaces. 2014;6(15):12997–13006.
  • Cheng Y, Zhao Y, Zhao H, et al. Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low-frequency and selective microwave response properties. Chem Eng J. 2019;372:390–398.
  • Li Q, Yin X, Duan W, et al. Electrical, dielectric and microwave-absorption properties of polymer derived SiC ceramics in X band. J Alloys Compd. 2013;565:66–72.
  • Dong S, Zhang X, Zhang D, et al. Strong effect of atmosphere on the microstructure and microwave absorption properties of porous SiC ceramics. J Eur Ceram Soc. 2018;38(1):29–39.
  • Guo X, Feng Y, Lin X, et al. The dielectric and microwave absorption properties of polymer-derived SiCN ceramics. J Eur Ceram Soc. 2018;38(4):1327–1333.
  • Wen Q, Yu Z, Riedel R. The fate and role of in situ formed carbon in polymer-derived ceramics. Prog Mater Sci. 2020;109:100623–100686.
  • Liu Q, Zi Z, Zheng Q, et al. Large-scale synthesis, characterization, and microwave absorption properties of manganese oxide nanowires. Integr Ferroelectr. 2015;164(1):82–89.
  • Yan D, Cheng S, Zhuo RF, et al. Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties. Nanotechnology. 2009;20(10):105706–105716.
  • Guan H, Chen G, Zhang S, et al. Microwave absorption characteristics of manganese dioxide with different crystalline phase and nanostructures. Mater Chem Phys. 2010;124(1):639–645.
  • Wu F, Xia Y, Wang Y, et al. Two-step reduction of self-assembed three-dimensional (3D) reduced graphene oxide (RGO)/zinc oxide (ZnO) nanocomposites for electromagnetic absorption. J Mater Chem A. 2014;2(47):20307–20315.
  • Yuchang Q, Qinlong W, Fa L, et al. Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band. J Mater Chem C. 2016;4(22):4853–4862.
  • Qing Y, Nan H, Luo F, et al. Nitrogen-doped graphene and titanium carbide nanosheet synergistically reinforced epoxy composites as high-performance microwave absorbers. RSC Adv. 2017;7(44):27755–27761.
  • Song C, Cheng L, Liu Y, et al. Microstructure and electromagnetic wave absorption properties of RGO-SiBCN composites via PDC technology. Ceram Int. 2018;44(15):18759–18769.
  • Gu C, Guo C, Dong X, et al. Core-shell structured iron-containing ceramic nanoparticles: facile fabrication and excellent electromagnetic absorption properties. J Am Ceram Soc. 2019;102(12):7098–7107.
  • Wen Q, Feng Y, Yu Z, et al. Microwave absorption of SiC/HfCxN1-x/C ceramic nanocomposites with HfCxN(1-x)-carbon core-shell particles. J Am Ceram Soc. 2016;99(8):2655–2663.
  • Feng Y, Yang Y, Wen Q, et al. Dielectric properties and electromagnetic wave absorbing performance of single-source-precursor synthesized Mo4.8Si3C0.6/SiC/Cfree nanocomposites with an in situ formed Nowotny phase. ACS Appl Mater Interfaces. 2020;12(14):16912–16921.
  • Dai S, Cheng Y, Quan B, et al. Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration. Nanoscale. 2018;10(15):6945–6953.
  • Shrestha G, Traina S, Swanston C. Black carbon’s properties and role in the environment: a comprehensive review. Sustainability. 2010;2(1):294–320.
  • Fan Y, Yang H, Li M, et al. Evaluation of the microwave absorption property of flake graphite. Mater Chem Phys. 2009;115(2):696–698.
  • Li G, Xie T, Yang S, et al. Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers. J Phys Chem C. 2012;116(16):9196–9201.
  • Wan F, Luo F, Wang H, et al. Effects of carbon black (CB) and alumina oxide on the electromagnetic- and microwave-absorption properties of SiC fiber/aluminum phosphate matrix composites. Ceram Int. 2014;40(10):15849–15857.
  • Zhang Z, Chen X, Wang Z, et al. Carbonyl iron/graphite microspheres with good impedance matching for ultra-broadband and highly efficient electromagnetic absorption. Opt Mater Express. 2018;8(11):3319–3331.
  • Zhong B, Liu W, Yu Y, et al. Enhanced microwave absorption properties of graphite nanoflakes by coating hexagonal boron nitride nanocrystals. Appl Surf Sci. 2017;420:858–867.
  • Xie W, Zhu X, Yi S, et al. Electromagnetic absorption properties of natural microcrystalline graphite. Mater Des. 2016;90:38–46.
  • Joseph N, Varghese J, Sebastian MT. Graphite reinforced polyvinylidene fluoride composites an efficient and sustainable solution for electromagnetic pollution. Compos Part B Eng. 2017;123:271–278.
  • Wang P, Cheng L, Zhang Y, et al. Electrospinning of graphite/SiC hybrid nanowires with tunable dielectric and microwave absorption characteristics. Compos Part A Appl Sci Manuf. 2018;104:68–80.
  • Wang P, Cheng L, Zhang L. One-dimensional carbon/SiC nanocomposites with tunable dielectric and broadband electromagnetic wave absorption properties. Carbon. 2017;125:207–220.
  • Xiang J, Li J, Zhang X, et al. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. J Mater Chem A. 2014;2(40):16905–16914.
  • Park K-Y, Han J-H, Lee S-B, et al. Microwave absorbing hybrid composites containing Ni-Fe coated carbon nanofibers prepared by electroless plating. Compos Part A Appl Sci Manuf. 2011;42(5):573–578.
  • Zhang T, Huang D, Yang Y, et al. Fe3O4/carbon composite nanofiber absorber with enhanced microwave absorption performance. Mater Sci Eng: B. 2013;178(1):1–9.
  • Wang L, He F, Wan Y. Facile synthesis and electromagnetic wave absorption properties of magnetic carbon fiber coated with Fe-Co alloy by electroplating. J Alloys Compd. 2011;509(14):4726–4730.
  • Liu L, Zhang S, Yan F, et al. Three-dimensional hierarchical MoS2 nanosheets/ultralong N-doped carbon nanotubes as high-performance electromagnetic wave absorbing material. ACS Appl Mater Interfaces. 2018;10(16):14108–14115.
  • Ye Z, Li Z, Roberts JA, et al. Electromagnetic wave absorption properties of carbon nanotubes-epoxy composites at microwave frequencies. J Appl Phys. 2010;108(5):054315.
  • Ni Q-Q, Melvin GJH, Natsuki T. Double-layer electromagnetic wave absorber based on barium titanate/carbon nanotube nanocomposites. Ceram Int. 2015;41(8):9885–9892.
  • Liu G, Wang L, Chen G, et al. Enhanced electromagnetic absorption properties of carbon nanotubes and zinc oxide whisker microwave absorber. J Alloys Compd. 2012;514:183–188.
  • Ding D, Wang J, Yu X, et al. Dispersing of functionalized CNTs in Si-O-C ceramics and electromagnetic wave absorbing and mechanical properties of CNTs/Si-O-C nanocomposites. Ceram Int. 2020;46(4):5407–5419.
  • Wei H, Yin X, Li X, et al. Controllable synthesis of defective carbon nanotubes/Sc2Si2O7 ceramic with adjustable dielectric properties for broadband high-performance microwave absorption. Carbon. 2019;147:276–283.
  • Xu J, Xia L, Luo J, et al. The high-performance electromagnetic wave absorbing CNT/SiCf composites: synthesis, tuning, and mechanism. ACS Appl Mater Interfaces. 2020;12(18):20775–20784.
  • Bi S, Su X, Hou G, et al. Electrical conductivity and microwave absorption of shortened multi-walled carbon nanotube/alumina ceramic composites. Ceram Int. 2013;39(5):5979–5983.
  • Li Y, Li Z, Shen PK. Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv Mater. 2013;25(17):2474–2480.
  • Cao W-Q, Wang X-X, Yuan J, et al. Temperature dependent microwave absorption of ultrathin graphene composites. J Mater Chem C. 2015;3(38):10017–10022.
  • Worsley MA, Kucheyev SO, Mason HE, et al. Mechanically robust 3D graphene macroassembly with high surface area. Chem Commun. 2012;48(67):8428–8430.
  • Hu H, Zhao Z, Zhou Q, et al. The role of microwave absorption on formation of graphene from graphite oxide. Carbon. 2012;50(9):3267–3273.
  • Chen C-Y, Pu N-W, Liu Y-M, et al. Microwave absorption properties of holey graphene/silicone rubber composites. Compos Part B Eng. 2018;135:119–128.
  • Zhang D, Jia Y, Cheng J, et al. High-performance microwave absorption materials based on MoS2-graphene isomorphic hetero-structures. J Alloys Compd. 2018;758:62–71.
  • Liu X, Yu Z, Ishikawa R, et al. Single-source-precursor synthesis and electromagnetic properties of novel RGO-SiCN ceramic nanocomposites. J Mater Chem C. 2017;5(31):7950–7960.
  • Ding D, Wang J, Xiao G, et al. Enhanced electromagnetic wave absorbing properties of Si-O-C ceramics with in-situ formed 1D nanostructures. Int J Appl Ceram Technol. 2019;17(2):734–744.
  • Shi Y, Luo F, Ding D, et al. Effects of oxidation curing of polycarbosilane on dielectric and microwave absorption properties of PDCs-SiC ceramics. Int J Appl Ceram Technol. 2016;13(1):17–22.
  • Ding D, Li Z, Xiao G, et al. Ku-band electromagnetic wave absorbing properties of polysiloxane derived Si-O-C bulk ceramics. Mater Res Express. 2018;5(2):025039–025049.
  • Zhuo RF, Qiao L, Feng HT, et al. Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees. J Appl Phys. 2008;104(9):094101–094106.
  • Li Q, Yin X, Duan W, et al. Dielectric and microwave absorption properties of polymer derived SiCN ceramics annealed in N2 atmosphere. J Eur Ceram Soc. 2014;34(3):589–598.
  • Zhang T, Zhang J, Wen G, et al. Ultra-light h-BCN architectures derived from new organic monomers with tunable electromagnetic wave absorption. Carbon. 2018;136:345–358.
  • Liu X, Zhang L, Yin X, et al. The microstructure and electromagnetic wave absorption properties of near-stoichiometric SiC fibre. Ceram Int. 2017;43(3):3267–3273.
  • Liu R, Lun N, Qi Y-X, et al. Microwave absorption properties of TiN nanoparticles. J Alloys Compd. 2011;509(41):10032–10035.
  • Wu R, Zhou K, Yang Z, et al. Molten-salt-mediated synthesis of SiC nanowires for microwave absorption applications. Cryst Eng Comm. 2013;15(3):570–576.
  • Wang P, Cheng L, Zhang Y, et al. Flexible SiC/Si3N4 composite nanofibers with in situ embedded graphite for highly efficient electromagnetic wave absorption. ACS Appl Mater Interfaces. 2017;9(34):28844–28858.
  • Liu L, Duan Y, Ma L, et al. Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black. Appl Surf Sci. 2010;257(3):842–846.
  • Liu X, Zhang Z, Wu Y. Absorption properties of carbon black/silicon carbide microwave absorbers. Compos Part B Eng. 2011;42(2):326–329.
  • Song W-L, Guan X-T, Fan L-Z, et al. Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites. Carbon. 2016;100:109–117.
  • Song C, Yin X, Han M, et al. Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon. 2017;116:50–58.
  • Cao M-S, Song W-L, Hou Z-L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon. 2010;48(3):788–796.
  • Xie S, Jin G-Q, Meng S, et al. Microwave absorption properties of in situ grown CNTs/SiC composites. J Alloys Compd. 2012;520:295–300.
  • Mo Z, Yang R, Lu D, et al. Lightweight, three-dimensional carbon nanotube@TiO2 sponge with enhanced microwave absorption performance. Carbon. 2019;144:433–439.
  • Chen C, Pan L, Jiang S, et al. Electrical conductivity, dielectric and microwave absorption properties of graphene nanosheets/magnesia composites. J Eur Ceram Soc. 2018;38(4):1639–1646.
  • Kuang J, Hou X, Xiao T, et al. Three-dimensional carbon nanotube/SiC nanowire composite network structure for high-efficiency electromagnetic wave absorption. Ceram Int. 2019;45(5):6263–6267.
  • Huang B, Wang Z, Hu H, et al. Enhancement of the microwave absorption properties of PyC-SiCf/SiC composites by electrophoretic deposition of SiC nanowires on SiC fibers. Ceram Int. 2020;46(7):9303–9310.
  • Li Q, Yin X, Duan W, et al. Improved dielectric properties of PDCs-SiCN by in-situ fabricated nano-structured carbons. J Eur Ceram Soc. 2017;37(4):1243–1251.
  • Zhang W, He X, Du Y. EMW absorption properties of in-situ growth seamless SiBCN-graphene hybrid material. Ceram Int. 2019;45(1):659–664.
  • Chen L, Zhao J, Wang L, et al. In-situ pyrolyzed polymethylsilsesquioxane multi-walled carbon nanotubes derived ceramic nanocomposites for electromagnetic wave absorption. Ceram Int. 2019;45(9):11756–11764.
  • Liu Y, Zeng S, Teng Z, et al. Carbon nanofibers propped hierarchical porous SiOC ceramics toward efficient microwave absorption. Nanoscale Res Lett. 2020;15(1):28–35.
  • Ma M, Yang R, Zhang C, et al. Direct large-scale fabrication of C-encapsulated B4C nanoparticles with tunable dielectric properties as excellent microwave absorbers. Carbon. 2019;148:504–511.
  • Kang Y, Jiang Z, Ma T, et al. Hybrids of reduced graphene oxide and hexagonal boron nitride: lightweight absorbers with tunable and highly efficient microwave attenuation properties. ACS Appl Mater Interfaces. 2016;8(47):32468–32476.
  • Zhang M, Li Z, Wang T, et al. Preparation and electromagnetic wave absorption performance of Fe3Si/SiC@SiO2 nanocomposites. Chem Eng J. 2019;362:619–627.
  • Zhao H-B, Fu Z-B, Chen H-B, et al. Excellent electromagnetic absorption capability of Ni/carbon based conductive and magnetic foams synthesized via a green one pot route. ACS Appl Mater Interfaces. 2016;8(2):1468–1477.
  • Qiu S, Lyu H, Liu J, et al. Facile synthesis of porous nickel/carbon composite microspheres with enhanced electromagnetic wave absorption by magnetic and dielectric losses. ACS Appl Mater Interfaces. 2016;8(31):20258–20266.
  • Pan G, Zhu J, Ma S, et al. Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexagonal and cubic Co nanocrystals grown on graphene. ACS Appl Mater Interfaces. 2013;5(23):12716–12724.
  • Zhao B, Deng J, Liang L, et al. Lightweight porous Co3O4 and Co/CoO nanofibers with tunable impedance match and configuration-dependent microwave absorption properties. CrystEngComm. 2017;19(41):6095–6106.
  • Deng J, Li S, Zhou Y, et al. Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cubic phases) through interfacial polarizations. J Colloid Interface Sci. 2018;509:406–413.
  • Ding Z, Shi SQ, Zhang H, et al. Electromagnetic shielding properties of iron oxide impregnated kenaf bast fiberboard. Compos Part B Eng. 2015;78:266–271.
  • Tang H, Jian X, Wu B, et al. Fe3C/helical carbon nanotube hybrid: facile synthesis and spin-induced enhancement in microwave-absorbing properties. Compos Part B Eng. 2016;107:51–58.
  • Wang Y, Feng Y, Guo X, et al. Electromagnetic and wave absorbing properties of Fe-doped polymer-derived SiCN ceramics. RSC Adv. 2017;7(73):46215–46220.
  • Yang Y, Xia L, Zhang T, et al. Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance. Chem Eng J. 2018;352:510–518.
  • Li X, Gao M, Jiang Y. Synthesis and electromagnetic wave reflectivity of Si3N4 ceramic with gradient Fe3O4 distribution. Ceram Int. 2016;42(8):9636–9639.
  • Wang Y, Guo X, Feng Y, et al. Wave absorbing performance of polymer-derived SiCN(Fe) ceramics. Ceram Int. 2017;43(17):15551–15555.
  • Singh S, Shukla S, Kumar A, et al. Influence of Zn dispersion in SiC on electromagnetic wave absorption characteristics. J Alloys Compd. 2018;738:448–460.
  • Liu X, Huang Y, Zhang N, et al. Synthesis of CoNi/SiO2 core-shell nanoparticles decorated reduced graphene oxide nanosheets for enhanced electromagnetic wave absorption properties. Ceram Int. 2018;44(18):22189–22197.
  • Hou Y, Xiao B, Yang G, et al. Enhanced electromagnetic wave absorption performance of novel carbon-coated Fe3Si nanoparticles in an amorphous SiCO ceramic matrix. J Mater Chem C. 2018;6(28):7661–7670.
  • Lou Z, Li Y, Han H, et al. Synthesis of porous 3D Fe/C composites from waste wood with tunable and excellent electromagnetic wave absorption performance. ACS Sustain Chem Eng. 2018;6(11):15598–15607.
  • Luo C, Duan W, Yin X, et al. Microwave-absorbing polymer-derived ceramics from cobalt-coordinated poly(dimethylsilylene)diacetylenes. J Phys Chem C. 2016;120(33):18721–18732.
  • Ma Z, Wang J, Liu Q, et al. Microwave absorption of electroless Ni-Co-P-coated SiO2 powder. Appl Surf Sci. 2009;255(13–14):6629–6633.
  • Huang X, Zhang M, Qin Y, et al. Bead-like Co-doped ZnO with improved microwave absorption properties. Ceram Int. 2019;45(6):7789–7796.
  • Wang S, Lin X, Ashfaq MZ, et al. Microwave absorption properties of SiCN ceramics doped with cobalt nanoparticles. J Mater Sci Mater Electron. 2020;31(5):3803–3816.
  • Wang H, Wu L, Jiao J, et al. Covalent interaction enhanced electromagnetic wave absorption in SiC/Co hybrid nanowires. J Mater Chem A. 2015;3(12):6517–6525.
  • Liang C, Liu C, Wang H, et al. SiC-Fe3O4 dielectric-magnetic hybrid nanowires: controllable fabrication, characterization and electromagnetic wave absorption. J Mater Chem A. 2014;2(39):16397–16402.
  • Sun M, Lv X, Xie A, et al. Growing 3D ZnO nano-crystals on 1D SiC nanowires: enhancement of dielectric properties and excellent electromagnetic absorption performance. J Mater Chem C. 2016;4(38):8897–8902.
  • Kuang J, Jiang P, Liu W, et al. Synergistic effect of Fe-doping and stacking faults on the dielectric permittivity and microwave absorption properties of SiC whiskers. Appl Phys Lett. 2015;106(21–25):212903.
  • Singh S, Kumar A, Agarwal S, et al. Synthesis and tunable microwave absorption characteristics of flower-like Ni/SiC composites. J Magn Magn Mater. 2020;503:166616–166626.
  • Kuang J, Xiao T, Zheng Q, et al. Dielectric permittivity and microwave absorption properties of transition metal Ni and Mn doped SiC nanowires. Ceram Int. 2020;46(9):12996–13002.
  • Wei B, Zhou J, Yao Z, et al. The effect of Ag nanoparticles content on dielectric and microwave absorption properties of β-SiC. Ceram Int. 2020;46(5):5788–5798.
  • Liu Y, Lin X, Gong H, et al. Electromagnetic properties and microwave absorption performances of nickel-doped SiCN ceramics pyrolyzed at different temperatures. J Alloys Compd. 2019;771:356–363.
  • Du B, Qian J, Hu P, et al. Enhanced electromagnetic wave absorption of Fe-doped silicon oxycarbide nanocomposites. J Am Ceram Soc. 2020;103(3):1732–1743.
  • Liu Y, Luo F, Su J, et al. Electromagnetic and microwave absorption properties of the nickel/Ti3SiC2 hybrid powders in X-band. J Magn Magn Mater. 2014;365:126–131.
  • Li Z, Yang Z, Zhang M, et al. Dielectric properties of Al-doped Ti3SiC2 as a novel microwave absorbing material. Ceram Int. 2017;43(1, Part A):222–227.
  • Javid M, Zhou Y, Wang D, et al. Strong microwave absorption of Fe@SiO2 nanocapsules fabricated by one-step high energy plasma. J Phys Chem Solids. 2019;129:242–251.
  • Hou Y, Xiao B, Sun Z, et al. High temperature anti-oxidative and tunable wave absorbing SiC/Fe3Si/CNTs composite ceramic derived from a novel polysilyacetylene. Ceram Int. 2019;45(13):16369–16379.
  • Liu P, Huang Y, Yan J, et al. Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption. J Mater Chem C. 2016;4(26):6362–6370.
  • Zhou P, Chen J-h, Liu M, et al. Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2-18 GHz range. Int J Miner Metall Mater. 2017;24(7):804–813.
  • Wang L, Zhu J, Yang H, et al. Fabrication of hierarchical graphene@Fe3O4@SiO2@polyaniline quaternary composite and its improved electrochemical performance. J Alloys Compd. 2015;634:232–238.
  • Ren Y-L, Wu H-Y, Lu M-M, et al. Quaternary nanocomposites consisting of graphene, Fe3O4@Fe Core@Shell, and ZnO nanoparticles: synthesis and excellent electromagnetic absorption properties. ACS Appl Mater Interfaces. 2012;4(12):6436–6442.
  • Chen Y-H, Huang Z-H, Lu M-M, et al. 3D Fe3O4 nanocrystals decorating carbon nanotubes to tune electromagnetic properties and enhance microwave absorption capacity. J Mater Chem A. 2015;3(24):12621–12625.
  • Wang L, Huang Y, Sun X, et al. Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale. 2014;6(6):3157–3164.
  • Sun D, Zou Q, Wang Y, et al. Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale. 2014;6(12):6557–6562.
  • Wang L, Huang Y, Li C, et al. Hierarchical composites of polyaniline nanorod arrays covalently-grafted on the surfaces of graphene@Fe3O4@C with high microwave absorption performance. Compos Sci Technol. 2015;108:1–8.
  • Singh S, Maurya AK, Gupta R, et al. Improved microwave absorption behavioral response of Ni/SiC and Ni/SiC/graphene composites: a comparative insight. J Alloys Compd. 2020;823:153780–153792.
  • Wang P, Liu P-A, Ye S. Preparation and microwave absorption properties of Ni(Co/Zn/Cu)Fe2O4/SiC@SiO2 composites. Rare Met. 2019;38(1):59–63.
  • He J, Deng L, Luo H, et al. Electromagnetic matching and microwave absorption abilities of Ti3SiC2 encapsulated with Ni0.5Zn0.5Fe2O4 shell. J Magn Magn Mater. 2019;473:184–189.
  • Zhang Y, Meng H, Shi Y, et al. Tin/Ni/C ternary composites with expanded heterogeneous interfaces for efficient microwave absorption. Compos Part B Eng. 2020;193:108028–108036.
  • Pang H, Pang W, Zhang B, et al. Excellent microwave absorption properties of the h-BN-GO-Fe3O4 ternary composite. J Mater Chem C. 2018;6(43):11722–11730.
  • Liu Y, Jian X, Su X, et al. Electromagnetic interference shielding and absorption properties of Ti3SiC2/nano Cu/epoxy resin coating. J Alloys Compd. 2018;740:68–76.
  • Kong L, Yin X, Zhang L, et al. Effect of aluminum doping on microwave absorption properties of ZnO/ZrSiO4 composite ceramics. J Am Ceram Soc. 2012;95(10):3158–3165.
  • Liu X, Chai N, Yu Z, et al. Ultra-light, high flexible and efficient CNTs/Ti3C2-sodium alginate foam for electromagnetic absorption application. J Mater Sci Technol. 2019;35(12):2859–2867.
  • Zhao B, Zhao W, Shao G, et al. Morphology-control synthesis of a core-shell structured NiCu alloy with tunable electromagnetic-wave absorption capabilities. ACS Appl Mater Interfaces. 2015;7(23):12951–12960.
  • Zhao B, Fan B, Xu Y, et al. Preparation of honeycomb SnO2 foams and configuration-dependent microwave absorption features. ACS Appl Mater Interfaces. 2015;7(47):26217–26225.
  • Zhao B, Guo X, Zhao W, et al. Yolk-Shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl Mater Interfaces. 2016;8(42):28917–28925.
  • Zhu Q, Zhang Z, Lv Y, et al. Synthesis and electromagnetic wave absorption performance of NiCo2O4 nanomaterials with different nanostructures. CrystEngComm. 2019;21(31):4568–4577.
  • Yuan X, Wang R, Huang W, et al. Lamellar vanadium nitride nanowires encapsulated in graphene for electromagnetic wave absorption. Chem Eng J. 2019;378:122203–122213.
  • Wu H, Liu J, Liang H, et al. Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption. Chem Eng J. 2020;393:124743.
  • Zhao B, Shao G, Fan B, et al. In situ synthesis of novel urchin-like ZnS/Ni3S2@Ni composite with a core-shell structure for efficient electromagnetic absorption. J Mater Chem C. 2015;3(41):10862–10869.
  • Su T, Zhao B, Fan B, et al. Enhanced microwave absorption properties of novel hierarchical core-shell δ/α MnO2 composites. J Solid State Chem. 2019;273:192–198.
  • Yudistira HT. Tailoring multiple reflections by using graphene as background for tunable terahertz metamaterial absorbere. Mater Res Express. 2019;6(7):075804–075812.
  • Zhao B, Shao G, Fan B, et al. Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J Mater Chem A. 2015;3(19):10345–10352.
  • Pan J, Xia W, Sun X, et al. Improvement of interfacial polarization and impedance matching for two-dimensional leaf-like bimetallic (Co, Zn) doped porous carbon nanocomposites with broadband microwave absorption. Appl Surf Sci. 2020;512:144894–144904.
  • Yang L, Lv H, Li M, et al. Multiple polarization effect of shell evolution on hierarchical hollow C@MnO2 composites and their wideband electromagnetic wave absorption properties. Chem Eng J. 2020;392:123666–123676.
  • Elahi A, Shakoor A, Irfan M, et al. Effect of loading ZnNiCrFe2O4 nanoparticles on structural and microwave absorption properties of polyaniline nanocomposites. J Mater Sci Mater Electron. 2016;27(9):9489–9495.
  • Bueno AR, Gregori ML, Nóbrega MCS. Microwave-absorbing properties of Ni0.50–xZn0.50−xMe2xFe2O4 (Me=Cu, Mn, Mg) ferrite-wax composite in X-band frequencies. J Magn Magn Mater. 2008;320(6):864–870.
  • Zhang L, Zhu H, Song Y, et al. The electromagnetic characteristics and absorbing properties of multi-walled carbon nanotubes filled with Er2O3 nanoparticles as microwave absorbers. Mater Sci Eng B. 2008;153(1):78–82.
  • Lv H, Liang X, Ji G, et al. Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl Mater Interfaces. 2015;7(18):9776–9783.
  • Fang J, Liu T, Chen Z, et al. A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber. Nanoscale. 2016;8(16):8899–8909.
  • Wang F, Sun Y, Li D, et al. Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning. Carbon. 2018;134:264–273.
  • Sun D, Zou Q, Qian G, et al. Controlled synthesis of porous Fe3O4-decorated graphene with extraordinary electromagnetic wave absorption properties. Acta Mater. 2013;61(15):5829–5834.
  • Yin X, Xue Y, Zhang L, et al. Dielectric, electromagnetic absorption and interference shielding properties of porous yttria-stabilized zirconia/silicon carbide composites. Ceram Int. 2012;38(3):2421–2427.
  • Lin Y, Dai J, Yang H, et al. Graphene multilayered sheets assembled by porous Bi2Fe4O9 microspheres and the excellent electromagnetic wave absorption properties. Chem Eng J. 2018;334:1740–1748.
  • Feng J, Zong Y, Sun Y, et al. Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance. Chem Eng J. 2018;345:441–451.
  • Liu L, Duan Y, Guo J, et al. Influence of particle size on the electromagnetic and microwave absorption properties of FeSi/paraffin composites. Phys B. 2011;406(11):2261–2265.
  • Wu LZ, Ding J, Jiang HB, et al. Particle size influence to the microwave properties of iron based magnetic particulate composites. J Magn Magn Mater. 2005;285(1):233–239.
  • Wu N, Liu X, Zhao C, et al. Effects of particle size on the magnetic and microwave absorption properties of carbon-coated nickel nanocapsules. J Alloys Compd. 2016;656:628–634.
  • Zhou PH, Deng LJ, Xie JL, et al. Nanocrystalline structure and particle size effect on microwave permeability of FeNi powders prepared by mechanical alloying. J Magn Magn Mater. 2005;292:325–331.
  • Wang C, Lv R, Huang Z, et al. Synthesis and microwave absorbing properties of FeCo alloy particles/graphite nanoflake composites. J Alloys Compd. 2011;509(2):494–498.
  • Wang D-J, Zhang J-Y, He P, et al. Size-modulated electromagnetic properties and highly efficient microwave absorption of magnetic iron oxide ceramic opened-hollow microspheres. Ceram Int. 2019;45(17, Part B):23043–23049.
  • Chen N, Jiang JT, Xu CY, et al. Co7Fe3 and Co7Fe3@SiO2 nanospheres with tunable diameters for high-performance electromagnetic wave absorption. ACS Appl Mater Interfaces. 2017;9(26):21933–21941.
  • Ghanbari F, Moradi Dehaghi S, Mahdavi H. Epoxy-based multilayered coating containing carbon nanotube (CNT), silicon carbide (SiC), and carbonyl iron (CI) particles: as efficient microwave absorbing materials. J Coat Technol Res. 2020;17:815–826.
  • Li X, Zhang L, Yin X. Electromagnetic properties of pyrolytic carbon-Si3N4 ceramics with gradient PyC distribution. J Eur Ceram Soc. 2013;33(4):647–651.
  • Li Z-J, Shi G-M, Zhao Q. Improved microwave absorption properties of core-shell type Ni@SiC nanocomposites. J Mater Sci Mater Electron. 2017;28(8):5887–5897.
  • Zhou S, Huang Y, Liu X, et al. Synthesis and microwave absorption enhancement of CoNi@SiO2@C hierarchical structures. Ind Eng Chem Res. 2018;57(16):5507–5516.
  • Liu Y, Wu W-W, Liu L-N, et al. Heterointerface engineering of lightweight, worm-like SiC/B4C hybrid nanowires as excellent microwave absorbers. J Mater Chem C. 2019;7(32):9892–9899.
  • Wang X, Yin L, Chen C, et al. Synthesis of tremella-like graphene@SiC nano-structure for electromagnetic wave absorbing material application. J Alloys Compd. 2018;741:205–210.
  • Luo H, Xiao P, Huang L, et al. Dielectric properties of Cf-Si3N4 sandwich composites prepared by gelcasting. Ceram Int. 2014;40(6):8253–8259.
  • Ren Y, Zhu C, Zhang S, et al. Three-dimensional SiO2@Fe3O4 core/shell nanorod array/graphene architecture: synthesis and electromagnetic absorption properties. Nanoscale. 2013;5(24):12296–12303.
  • Li B, Mao B, He T, et al. Effect of SiC layer on microwave absorption properties of novel three-dimensional interconnected SiC foam with double-layer hollow skeleton. Mater Res Express. 2020;7(1):015073–015087.
  • Du B, Qian J, Hu P, et al. Fabrication of C-doped SiC nanocomposites with tailoring dielectric properties for the enhanced electromagnetic wave absorption. Carbon. 2020;157:788–795.
  • Wei B, Zhou J, Yao Z, et al. Excellent microwave absorption property of nano-Ni coated hollow silicon carbide core-shell spheres. Appl Surf Sci. 2020;508:145261–145274.
  • Liu T, Liu N, Zhai S, et al. Tailor-made core/shell/shell-like Fe3O4@SiO2@PPy composites with prominent microwave absorption performance. J Alloys Compd. 2019;779:831–843.
  • Xiao S, Mei H, Han D, et al. Sandwich-like SiCnw/C/Si3N4 porous layered composite for full X-band electromagnetic wave absorption at elevated temperature. Compos Part B Eng. 2020;183:107629–107663.
  • Dong Y, Yin X, Wei H, et al. Carbon nanowires reinforced porous SiO2/3Al2O3·2SiO2 ceramics with tunable electromagnetic absorption properties. Ceram Int. 2019;45(9):11316–11324.
  • Li X-P, Deng Z, Li Y, et al. Controllable synthesis of hollow microspheres with Fe@carbon dual-shells for broad bandwidth microwave absorption. Carbon. 2019;147:172–181.
  • Jiang Y, Chen Y, Liu Y-J, et al. Lightweight spongy bone-like graphene@SiC aerogel composites for high-performance microwave absorption. Chem Eng J. 2018;337:522–531.
  • Zhong B, Sai T, Xia L, et al. High-efficient production of SiC/SiO2 core-shell nanowires for effective microwave absorption. Mater Des. 2017;121:185–193.
  • Rong H, Zhang Z, Li Y, et al. Significant magnetocaloric and microwave absorption performances in ultrafine ErC2@C core-shell structural nanocomposites. Compos Commun. 2019;12:123–127.
  • Ye X, Chen Z, Ai S, et al. Synthesis and microwave absorption properties of novel reticulation SiC/porous melamine-derived carbon foam. J Alloys Compd. 2019;791:883–891.
  • Yang HJ, Cao WQ, Zhang DQ, et al. NiO hierarchical nanorings on SiC: enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl Mater Interfaces. 2015;7(13):7073–7078.
  • Yuan J, Yang H-J, Hou Z-L, et al. Ni-decorated SiC powders: enhanced high-temperature dielectric properties and microwave absorption performance. Powder Technol. 2013;237:309–313.
  • Mu Y, Zhou W, Hu Y, et al. Temperature-dependent dielectric and microwave absorption properties of SiCf/SiC-Al2O3 composites modified by thermal cross-linking procedure. J Eur Ceram Soc. 2015;35(11):2991–3003.
  • Kuang B, Dou Y, Wang Z, et al. Enhanced microwave absorption properties of Co-doped SiC at elevated temperature. Appl Surf Sci. 2018;445:383–390.
  • Yuan X, Cheng L, Zhang Y, et al. Fe-doped SiC/SiO2 composites with ordered inter-filled structure for effective high-temperature microwave attenuation. Mater Des. 2016;92:563–570.
  • Han T, Luo R, Cui G, et al. Effect of SiC nanowires on the high-temperature microwave absorption properties of SiCf/SiC composites. J Eur Ceram Soc. 2019;39(5):1743–1756.
  • Luo C, Jiao T, Tang Y, et al. Excellent electromagnetic wave absorption of iron-containing SiBCN ceramics at 1158 K high-temperature. Adv Eng Mater. 2018;20(6):1701168–1701178.
  • Xu H, Yin X, Li M, et al. Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon. 2018;132:343–351.
  • Liu J, Cao M-S, Luo Q, et al. Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl Mater Interfaces. 2016;8(34):22615–22622.
  • Kong L, Yin X, Li Q, et al. High-temperature electromagnetic wave absorption properties of ZnO/ZrSiO4 composite ceramics. J Am Ceram Soc. 2013;96(7):2211–2217.
  • Lu M, Wang X, Cao W, et al. Carbon nanotube-CdS core-shell nanowires with tunable and high-efficiency microwave absorption at elevated temperature. Nanotechnology. 2015;27(6):065702–065709.
  • Han M, Yin X, Duan W, et al. Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability. J Eur Ceram Soc. 2016;36(11):2695–2703.
  • Yang H-J, Cao W-Q, Zhang D-Q, et al. NiO hierarchical nanorings on SiC: enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl Mater Interfaces. 2015;7(13):7073–7077.
  • Kong L, Yin X, Han M, et al. Carbon nanotubes modified with ZnO nanoparticles: high-efficiency electromagnetic wave absorption at high-temperatures. Ceram Int. 2015;41(3, Part B):4906–4915.
  • Peng C-H, Shiu Chen P, Chang C-C. High-temperature microwave bilayer absorber based on lithium aluminum silicate/lithium aluminum silicate-SiC composite. Ceram Int. 2014;40(1, Part A):47–55.
  • Dong S, Hu P, Zhang X, et al. Carbon foams modified with in-situ formation of Si3N4 and SiC for enhanced electromagnetic microwave absorption property and thermostability. Ceram Int. 2018;44(6):7141–7150.
  • Xiao S, Mei H, Han D, et al. Ultralight lamellar amorphous carbon foam nanostructured by SiC nanowires for tunable electromagnetic wave absorption. Carbon. 2017;122:718–725.
  • Zhao W, Shao G, Jiang M, et al. Ultralight polymer-derived ceramic aerogels with wide bandwidth and effective electromagnetic absorption properties. J Eur Ceram Soc. 2017;37(13):3973–3980.
  • Shao G, Liang J, Zhao W, et al. Co decorated polymer-derived SiCN ceramic aerogel composites with ultrabroad microwave absorption performance. J Alloys Compd. 2020;813:152007–115216.
  • Zhao H-B, Fu Z-B, Liu X-Y, et al. Magnetic and conductive Ni/carbon aerogels toward high-performance microwave absorption. Ind Eng Chem Res. 2017;57(1):202–211.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.