1,252
Views
0
CrossRef citations to date
0
Altmetric
Full Critical Review

Recent advances of electrodeposition of Bi2Te3 and its thermoelectric applications in miniaturized power generation and cooling

, , , ORCID Icon, ORCID Icon & ORCID Icon
Pages 521-555 | Received 08 Nov 2021, Accepted 17 Oct 2022, Published online: 20 Nov 2022

References

  • Kaur K, Kumar S, Baliyan A. 5G: a new era of wireless communication. Int J Inf Tech. 2020;12:619–624. doi:10.1007/s41870-018-0197-x
  • Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7:105–114. doi:10.1038/nmat2090
  • Kishore RA, Nozariasbmarz A, Poudel B, et al. Ultra-high performance wearable thermoelectric coolers with less materials. Nat Commun. 2019;10:1–13. doi:10.1038/s41467-019-09707-8
  • Wang Y, Yang L, Shi XL, et al. Flexible thermoelectric materials and generators: challenges and innovations. Adv Mater. 2019;31:1807916. doi:10.1002/adma.201807916
  • Ma Y, Ahlberg E, Sun Y, et al. Thermoelectric properties of thin films of bismuth telluride electrochemically deposited on stainless steel substrates. Electrochim Acta. 2011;56:4216–4223. doi:10.1016/j.electacta.2011.01.093
  • Wu M, Binnemans K, Fransaer J. Electrodeposition of antimony from chloride-free ethylene glycol solutions and fabrication of thermoelectric Bi2Te3/(Bi1–xSbx)2Te3 multilayers using pulsed potential electrodeposition. Electrochim Acta. 2014;147:451–459. doi:10.1016/j.electacta.2014.08.111
  • Zeng YJ, Wu D, Cao XH, et al. Nanoscale organic thermoelectric materials: measurement, theoretical models, and optimization strategies. Adv Funct Mater. 2020;30:1903873. doi:10.1002/adfm.201903873
  • Mao J, Chen G, Ren Z. Thermoelectric cooling materials. Nat Mater. 2021;20:454–461. doi:10.1038/s41563-020-00852-w
  • Witting IT, Chasapis TC, Ricci F, et al. The thermoelectric properties of bismuth telluride. Adv Electron Mater. 2019;5:1800904. doi:10.1002/aelm.201800904
  • Hao F, Qiu P, Tang Y, et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 degrees C. Energy Environ Sci. 2016;9:3120–3127. doi:10.1039/c6ee02017h
  • Ren Z, Taskin AA, Sasaki S, et al. Optimizing Bi(2–x)SbxTe(3–y)Sey solid solutions to approach the intrinsic topological insulator regime. Phys Rev. 2011;84:1615311.1–1165311.6. doi:10.1103/PhysRevB.84.165311
  • Manzano CV, Abad B, Muñoz Rojo M, et al. Anisotropic effects on the thermoelectric properties of highly oriented electrodeposited Bi2Te3 films. Sci. Rep. 2016;6:19129–19136. doi:10.1038/srep19129
  • Mamur H, Bhuiyan MRA, Korkmaz F, et al. A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renew Sust Energy Rev. 2018;82:4159–4169. doi:10.1016/j.rser.2017.10.112
  • Delves RT, Bowley AE, Hazelden DW, et al. Anisotropy of the electrical conductivity in bismuth telluride. Proc Phys Soc. 1961;78:838–844. doi:10.1088/0370-1328/78/5/329
  • Goldsmid HJ. The thermal conductivity of bismuth telluride. Proc Phys Soc B. 1956;69:203.
  • Na J, Kim Y, Park T, et al. Preparation of bismuth telluride films with high thermoelectric power factor. ACS Appl Mater Inter. 2016;8:32392–32400. doi:10.1021/acsami.6b10188
  • Ma Y, Zhang D, Peng Z, et al. Delivery of platinum(iv) prodrugs via Bi2Te3 nanoparticles for photothermal–chemotherapy and photothermal/photoacoustic imaging. Mol Pharmaceut. 2020;17:3403–3411. doi:10.1021/acs.molpharmaceut.0c00458
  • Wada K, Tomita K, Takashiri M. Fabrication of bismuth telluride nanoplates via solvothermal synthesis using different alkalis and nanoplate thin films by printing method. J Cryst Growth. 2016;468:194–198. doi:10.1016/j.jcrysgro.2016.12.048
  • Hosokawa Y, Wada K, Tanaka M, et al. Thermal annealing effect on structural and thermoelectric properties of hexagonal Bi2Te3 nanoplate thin films by drop-casting technique. Jpn J Appl Phys. 2018;57:02CC02. doi:10.7567/JJAP.57.02CC02
  • Mori R, Mayuzumi Y, Yamaguchi M, et al. Improved thermoelectric properties of solvothermally synthesized Bi2Te3 nanoplate films with homogeneous interconnections using Bi2Te3 electrodeposited layers. J Alloy Compd. 2020;818:152901. doi:10.1016/j.jallcom.2019.152901
  • Shi TF, Chen MR, Liu ZG, et al. A Bi2Te3-filled nickel foam film with exceptional flexibility and thermoelectric performance. Nanomater Basel. 2022;12:1693. doi:10.3390/nano12101693
  • Lu Y, Knize R J. Modified laser ablation process for nanostructured thermoelectric nanomaterial fabrication. Appl Surf Sci. 2007;254:1211–1214. doi:10.1016/j.apsusc.2007.06.040
  • Wudil YS, Gondal MA, Rao SG, et al. Substrate temperature-dependent thermoelectric figure of merit of nanocrystalline Bi2Te3 and Bi2Te2.7Se0.3 prepared using pulsed laser deposition supported by DFT study. Ceram Int. 2020;46:24162–24172. doi:10.1016/j.ceramint.2020.06.196
  • Fourmont P, Gerlein LF, Fortier FX, et al. Highly efficient thermoelectric microgenerators using nearly room temperature pulsed laser deposition. ACS Appl Mater Inter. 2018;10:10194–10201. doi:10.1021/acsami.7b18852
  • Chang HC, Chen TH, Whang WT, et al. Superassembling of Bi2Te3 hierarchical nanostructures for enhanced thermoelectric performance. J Mater Chem A. 2015;3:10459–10465. doi:10.1039/C5TA00911A
  • Zhang H, Momand J, Levinsky J, et al. Nanostructure and thermal power of highly-textured and single-crystal-like Bi2Te3 thin films. Nano Res. 2022;15:2382–2390. doi:10.1007/s12274-021-3743-y
  • Ahmad F, Singh S, Pundir SK, et al. Effect of doping and annealing on thermoelectric properties of bismuth telluride thin films. J Electron Mater. 2020;49:4195–4202. doi:10.1007/s11664-020-08126-6
  • Yang F, Zheng S, Wang H, et al. A thin film thermoelectric device fabricated by a self-aligned shadow mask method. J Micromech Microeng. 2017;27:055005. doi:10.1088/1361-6439/aa64a3
  • Vieira EMF, Figueira J, Pires AL, et al. Enhanced thermoelectric properties of Sb2Te3 and Bi2Te3 films for flexible thermal sensors. J Alloy Compd. 2019;774:1102–1116. doi:10.1016/j.jallcom.2018.09.324
  • Sudarshan C, Jayakumar S, Vaideki K, et al. Effect of vacuum annealing on structural, electrical and thermal properties of e-beam evaporated Bi2Te3 thin films. Thin Solid Films. 2017;629:28–38. doi:10.1016/j.tsf.2017.03.043
  • Kim JK, Choi JY, Bae JM, et al. Thermoelectric characteristics of n-type Bi2Te3 and p-type Sb2Te3 thin films prepared by co-evaporation and annealing for thermopile sensor applications. Mater Trans. 2013;54:618–625. doi:10.2320/matertrans.M2013010
  • Jitthamapirom P, Wanarattikan P, Nuthongkum P, et al. Comparison of thermoelectric properties of flexible bismuth telluride thin films deposited via DC and RF magnetron sputtering. Ferroelectrics. 2019;552:64–72. doi:10.1080/00150193.2019.1653083
  • Kurokawa T, Mori R, Norimasa O, et al. Influences of substrate types and heat treatment conditions on structural and thermoelectric properties of nanocrystalline Bi2Te3 thin films formed by dc magnetron sputtering. Vacuum. 2020;179:109535. doi:10.1016/j.vacuum.2020.109535
  • Takayama K, Takashiri M. Multi-layered-stack thermoelectric generators using p-type Sb2Te3 and n-type Bi2Te3 thin films by radio-frequency magnetron sputtering. Vacuum. 2017;144:164–171. doi:10.1016/j.vacuum.2017.07.030
  • Takahashi M, Katou Y, Nagata K, et al. The composition and conductivity of electrodeposited Bi–Te alloy films. Thin Solid Films. 1994;240:70–72. doi:10.1016/0040-6090(94)90696-3
  • Norimasa O, Takashiri M. In-and cross-plane thermoelectric properties of oriented Bi2Te3 thin films electrodeposited on an insulating substrate for thermoelectric applications. J Alloy Compd. 2022;899:163317. doi:10.1016/j.jallcom.2021.163317
  • Padmanathan N, Lal S, Gautam D, et al. Amorphous framework in electrodeposited CuBiTe thermoelectric thin films with high room-temperature performance. ACS Appl Electron Mater. 2021;3:1794–1803. doi:10.1021/acsaelm.1c00063
  • Su N, Guo S, Li F, et al. Electrodeposition of Bi–Te thin films on silicon wafer and micro-column arrays on microporous glass template. Nanomaterials Basel. 2020;10:431–447. doi:10.3390/nano10030431
  • Tarancón A. Powering the IoT revolution with heat. Nat Electron. 2019;2:270–271. doi:10.1038/s41928-019-0276-4
  • Yu Y, Zhu W, Kong X, et al. Recent development and application of thin-film thermoelectric cooler. Front Chem Sci Eng. 2020;14:492–503. doi:10.1007/s11705-019-1829-9
  • Wu T, Kim J, Lim JH, et al. Comprehensive review on thermoelectric electrodeposits: enhancing thermoelectric performance through nanoengineering. Front Chem. 2021;9:762896. doi:10.3389/fchem.2021.762896
  • Rostek R, Stein N, Boulanger C. A review of electroplating for V–VI thermoelectric films: from synthesis to device integration. J Mater Res. 2015;30:2518–2543. doi:10.1557/jmr.2015.203
  • Martın-González MS, Prieto AL, Gronsky R, et al. Insights into the electrodeposition of Bi2Te3. J Electrochem Soc. 2002;149:C546–C554. doi:10.1149/1.1509459
  • Jon JS, Ri WK, Sin KR, et al. Derivation of limiting ion mobility equation based on the application of solvation effect-incorporated Poisson-Boltzmann equation. J Mol Liq. 2022;347:117988. doi:10.1016/j.molliq.2021.117988
  • Schoenleber J, Stein N, Boulanger C. Influence of tartaric acid on diffusion coefficients of BiIII, SbIII, TeIV in aqueous medium: application of electrodeposition of thermoelectric films. J Electroanal Chem. 2014;724:111–117. doi:10.1016/j.jelechem.2014.04.004
  • Sonkar PK, Prakash K, Yadav M, et al. Co (II)-porphyrin-decorated carbon nanotubes as catalysts for oxygen reduction reactions: an approach for fuel cell improvement. J Mater Chem A. 2017;5:6263–6276. doi:10.1039/c6ta10482g
  • Li FH, Jia FL, Wang W. Studies of the electrochemical reduction processes of Bi3+, HTeO2+ and their mixtures. Appl Surf Sci. 2009;255:7394–7402. doi:10.1016/j.apsusc.2009.04.007
  • Jain A, Ong SP, Hautier G, et al. The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013;1:011002. doi:10.1063/1.4812323
  • Allen JB, György I, Fritz S. Electrochemical dictionary. Berlin: Springer Berlin Heidelberg; 2012. doi:10.1007/978-3-540-74598-3
  • Bo X, Tang A, Dou M, et al. Controllable electrodeposition and mechanism research of nanostructured Bi2Te3 thin films with high thermoelectric properties. Appl Surf Sci. 2019;486:65–71. doi:10.1016/j.apsusc.2019.04.194
  • Oh JW, Seong Y, Shin DS, et al. Investigation and two-stage modeling of sintering behavior of nano/micro-bimodal powders. Powder Technol. 2019;352:42–52. doi:10.1016/j.powtec.2019.04.056
  • Zhao D, Løvvik OM, Marthinsen K, et al. Segregation of Mg, Cu and their effects on the strength of Al Σ5 (210)[001] symmetrical tilt grain boundary. Acta Mater. 2018;145:235–246. doi:10.1016/j.actamat.2017.12.023
  • Li M, Ma Q, Zi W, et al. Pt monolayer coating on complex network substrate with high catalytic activity for the hydrogen evolution reaction. Sci Adv. 2015;1:e1400268. doi:10.1126/sciadv.1400268
  • Schaefer C, Kirk AT, Allers M, et al. Ion mobility shift of isotopologues in a high kinetic energy ion mobility spectrometer (HiKE-IMS) at elevated effective temperatures. J Am Soc Mass Spectr. 2020;31:2093–2101. doi:10.1021/jasms.0c00220
  • Xu W, Cooper EI, Angell CA. Ionic liquids: ion mobilities, glass temperatures, and fragilities. J Phy Chem B. 2003;107:6170–6178. doi:10.1021/jp0275894
  • Mirmahdieh S, Khayamian T, Saraji M. Analysis of dextromethorphan and pseudoephedrine in human plasma and urine samples using hollow fiber-based liquid–liquid–liquid microextraction and corona discharge ion mobility spectrometry. Microchim Acta. 2012;176:471–478. doi:10.1007/s00604-011-0743-8
  • Borsdorf H, Mayer T, Zarejousheghani M, et al. Recent developments in ion mobility spectrometry. Appl Spectrosc Rev. 2011;46:472–521. doi:10.1080/05704928.2011.582658
  • Manzano CV, Abad B, Martín-González M. The effect of electrolyte impurities on the thermoelectric properties of electrodeposited Bi2Te3 films. J Electrochem Soc. 2018;165:D768–D773. doi:10.1149/2.1131814jes
  • Chan TE, LeBeau JM, Venkatasubramanian R, et al. Carrier concentration modulation by hot pressing pressure in n-type nanostructured Bi(Se)Te alloy. Appl Phys Lett. 2013;103:144106–144110. doi:10.1063/1.4823801
  • Dou Y, Zhu Q, Du Y, et al. Enhanced thermoelectric performance of Cu3SbSe4 doped with alkali-ion (Na and K). Electron Mater Lett. 2020;16:99–105. doi:10.1007/s13391-020-00198-0
  • Shuai J, Kim HS, Lan Y, et al. Study on thermoelectric performance by Na doping in nanostructured Mg1–xNaxAg0. 97Sb0. 99. Nano Energy. 2015;11:640–646. doi:10.1016/j.nanoen.2014.11.027
  • Kim YJ, Zhao LD, Kanatzidis MG, et al. Analysis of nanoprecipitates in a Na-doped PbTe–SrTe thermoelectric material with a high figure of merit. ACS Appl Mater Interfaces. 2017;9:21791–21797. doi:10.1021/acsami.7b04098
  • Zhu XG, Wen J, Wang G, et al. Doping nature of Cu in epitaxial topological insulator Bi2Te3 thin films. Surf Sci. 2013;617:156–161. doi:10.1016/j.susc.2013.06.018
  • Guo X, Zhang C, Liu Z, et al. Multiple roles of unconventional heteroatom dopants in chalcogenide thermoelectrics: the influence of Nb on transport and defects in Bi2Te3. ACS Appl Mater Inter. 2021;13:13400–13409. doi:10.1021/acsami.1c00355
  • Ivanov O, Yaprintsev M. Mechanisms of thermoelectric efficiency enhancement in Lu-doped Bi2Te3. Mater Res Express. 2018;5:015905. doi:10.1088/2053-1591/aaa265
  • Guo Z, Song K, Yan Z, et al. Broadening the optimum thermoelectric power generation range of p-type sintered Bi0. 4Sb1. 6Te3 by suppressing bipolar effect. Chem Eng J. 2021;426:131853. doi:10.1016/j.cej.2021.131853
  • Kulbachinskiĭ VA, Kaminskiĭ AY, Tarasov PM, et al. Fermi surface and thermoelectric power of (Bi1–xSbx) 2Te3<Ag, Sn> mixed crystals. Phys Solid State+. 2006;48:833–840. doi:10.1134/S1063783406050040
  • Ni Y, Zhang Z, Nlebedim IC, et al. Ferromagnetism of magnetically doped topological insulators in CrxBi2–xTe3 thin films. J Appl Phys. 2015;117:17C748. doi:10.1063/1.4918560
  • Magri P, Boulanger C, Lecuire JM. Synthesis, properties and performances of electrodeposited bismuth telluride films. J Mater Chem C. 1996;6:773–779. doi:10.1039/JM9960600773
  • Kang W, Li W, Chou W, et al. Microstructure and thermoelectric properties of Bi2Te3 electrodeposits plated in nitric and hydrochloric acid baths. Thin Solid Films. 2017;623:90–97. doi:10.1016/j.tsf.2016.12.047
  • Kao CH, Chen KL, Chiu YS, et al. Comparison of NH3 and N2O plasma treatments on Bi2O3 sensing membranes applied in an electrolyte–insulator–semiconductor structure. Membranes. 2022;12:188. doi:10.3390/membranes12020188
  • Franklin TC. Some mechanisms of action of additives in electrodeposition processes. Surf Coat Tech. 1987;30:415–428. doi:10.1016/0257-8972(87)90133-2
  • Heo P, Hagiwara K, Ichino R, et al. Electrodeposition and thermoelectric characterization of Bi2Te3. J Electrochem Soc. 2006;153:C213–C217.
  • Nguyen HP, Wu M, Su J, et al. Electrodeposition of bismuth telluride thermoelectric films from a nonaqueous electrolyte using ethylene glycol. Electrochim Acta. 2012;68:9–17. doi:10.1016/j.electacta.2012.01.091
  • Cicvarić K, Meng L, Newbrook DW, et al. Thermoelectric properties of bismuth telluride thin films electrodeposited from a nonaqueous solution. ACS Omega. 2020;5:14679–14688. doi:10.1021/acsomega.0c01284
  • Martín-González M, Prieto AL, Knox MS, et al. Electrodeposition of Bi1–xSbx films and 200-nm wire arrays from a nonaqueous solvent. Chem Mater. 2003;15:1676–1681. doi:10.1021/cm021027f
  • Xia Y, Zhu D, Si S, et al. Nickel foam-supported polyaniline cathode prepared with electrophoresis for improvement of rechargeable Zn battery performance. J Power Sources. 2015;283:125–131. doi:10.1016/j.jpowsour.2015.02.123
  • Abellán M, Schrebler R, Gómez H. Electrodeposition of Bi2Te3 thin films onto FTO substrates from DMSO solution. Int J Electrochem Sci. 2015;10:7409–7422.
  • Van der Wal S. Low viscosity organic modifiers in reversed-phase HPLC. Chromatographia. 1985;20:274–278. doi:10.1007/BF02310382
  • Kestin J, Sokolov M, Wakeham WA. Viscosity of liquid water in the range – 8°C to 150°C. J Phys Chem Ref Data. 1978;7:941–948. doi:10.1063/1.555581
  • Jaworski AJ, Bolton GT. The design of an electrical capacitance tomography sensor for use with media of high dielectric permittivity. Meas Sci Technol. 2000;11:743–757. doi:10.1088/0957-0233/11/6/318
  • Warashina T, Hoshino H. Solvent effects for spectroscopic properties of near-infrared absorbing nickel–dithiolene complex [Ni (iPr2timdt)2](iPr2timdt: monoanion of 1, 3-diisopropylimidazolidine-2, 4, 5-trithione). B Chem Soc Jpn. 2016;89:836–841. doi:10.1246/bcsj.20160060
  • Kraus CA, Fuoss RM. Properties of electrolytic solutions. I. conductance as influenced by the dielectric constant of the solvent medium. J Am Chem Soc. 1933;55:21–36. doi:10.1021/ja01328a003
  • Wang P, Anderko A. Computation of dielectric constants of solvent mixtures and electrolyte solutions. Fluid Phase Equilibr. 2001;186:103–122. doi:10.1016/S0378-3812(01)00507-6
  • Jouyban A, Soltanpour S, Chan HK. A simple relationship between dielectric constant of mixed solvents with solvent composition and temperature. Int J Pharmaceut. 2004;269:353–360. doi:10.1016/j.ijpharm.2003.09.010
  • Creager S. Handbook of electrochemistry. Elsevier; 2007. doi:10.1016/B978-044451958-0.50004-5
  • Saad MA, Abdurahman NH, Yunus RM, et al. Surfactant for petroleum demulsification, structure, classification, and properties. A review. IOP Cof Ser Mater Sci Eng. 2020;991:012115. doi:10.1088/1757-899X/991/1/012115
  • Yoo IJ, Song Y, Lim DC, et al. Thermoelectric characteristics of Sb2Te3 thin films formed via surfactant-assisted electrodeposition. J Mater Chem A. 2013;1:5430–5435. doi:10.1039/c3ta01631e
  • Kulsi C, Mitra M, Kargupta K, et al. Effect of different surfactants and thicknesses on electrodeposited films of bismuth telluride and its thermoelectric performance. Mater Res Express. 2015;2:106403–106413. doi:10.1088/2053-1591/2/10/106403
  • Naylor AJ, Koukharenko E, Nandhakumar IS, et al. Surfactant-mediated electrodeposition of bismuth telluride films and its effect on microstructural properties. Langmuir. 2012;28:8296–8299. doi:10.1021/la301367m
  • Song Y, Yoo I, Heo N, et al. Electrodeposition of thermoelectric Bi2Te3 thin films with added surfactant. Curr Appl Phys. 2015;15:261–264. doi:10.1016/j.cap.2014.12.004
  • Caballero-Calero O, Díaz-Chao P, Abad B, et al. Improvement of bismuth telluride electrodeposited films by the addition of sodium lignosulfonate. Electrochim Acta. 2014;123:117–126. doi:10.1016/j.electacta.2013.12.185
  • Takahashi M, Kojima M, Sato S, et al. Electric and thermoelectric properties of electrodeposited bismuth telluride (Bi2Te3) films. J Appl Phys. 2004;96:5582–5587. doi:10.1063/1.1785834
  • Chien HC, Yang CR, Liao LL, et al. Thermal conductivity of thermoelectric thick films prepared by electrodeposition. Appl Therm Eng. 2013;51:75–83. doi:10.1016/j.applthermaleng.2012.09.004
  • Liu P, Mitlin D. Emerging potassium metal anodes: perspectives on control of the electrochemical interfaces. Acc Chem Res. 2020;53:1161–1175. doi:10.1021/acs.accounts.0c00099
  • Koch R. The intrinsic stress of polycrystalline and epitaxial thin metal films. J Phys Condens Mat. 1994;6:9519–9550. doi:10.1088/0953-8984/6/45/005
  • Peng Z, Hong Y. Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today. 2009;4:143–164. doi:10.1016/j.nantod.2008.10.010
  • Rajamani AR, Jothi S, Dhinesh Kumar M, et al. Effects of additives on kinetics, morphologies and lead-sensing property of electrodeposited bismuth films. J Phys Chem C. 2016;120:22398–22406. doi:10.1021/acs.jpcc.6b06924
  • Liu F, Wang B, Xing Y, et al. Effect of polyvinyl alcohol on the rheological properties of cement mortar. Molecules. 2020;25:754. doi:10.3390/molecules25030754
  • Bhandari A, Hearne SJ, Sheldon BW, et al. Microstructural origins of saccharin-induced stress reduction in electrodeposited Ni. J Electrochem Soc. 2009;156:D279–D282. doi:10.1149/1.3142363
  • Saitou M, Oshiro S, Sagawa Y. Scaling behavior of internal stress in electrodeposited nickel thin films. J Appl Phys. 2008;104:1231. doi:10.1063/1.3009336
  • Sen R, Das S, Das K. Influence of sodium saccharin on the microstructure of pulse electrodeposited Ni–CeO2 nanocomposite coating. J Nanosci Nanotechnol. 2012;12:7944–7949. doi:10.1166/jnn.2012.6654
  • Yu W, Van Toan N, Li YJ, et al. Morphological analysis and properties evaluation of electrodeposited thick BiSbTe films with cooperative interactions among multiple additives. J Electrochem Soc. 2021;168:22505–22513. doi:10.1149/1945-7111/abdd7b
  • Saxena M, Okram GS, Lakhani A, et al. Enhanced thermoelectric performance of solution-grown Bi2Te3 nanorods. Mater Today Energy. 2021;21:100700. doi:10.1016/j.mtener.2021.100700
  • Kim WS, Anoop G, Jeong IS, et al. Feasible tuning of barrier energy in PEDOT: PSS/Bi2Te3 nanowires-based thermoelectric nanocomposite thin films through polar solvent vapor annealing. Nano Energy. 2020;67:104207. doi:10.1016/j.nanoen.2019.104207
  • Shi XL, Zou J, Chen ZG. Advanced thermoelectric design: from materials and structures to devices. Chem Rev. 2020;120:7399–7515. doi:10.1021/acs.chemrev.0c00026
  • Miyazaki Y, Kajitani T. Preparation of Bi2Te3 films by electrodeposition. J Cryst Growth. 2001;229:542–546. doi:10.1016/S0022-0248(01)01225-8
  • Manzano CV, Rojas AA, Decepida M, et al. Thermoelectric properties of Bi2Te3 films by constant and pulsed electrodeposition. J Solid State Electr. 2013;17:2071–2078. doi:10.1007/s10008-013-2066-7
  • Burton MR, Richardson SJ, Staniec PA, et al. A novel route to nanostructured bismuth telluride films by electrodeposition. Electrochem Commun. 2017;76:71–74. doi:10.1016/j.elecom.2017.02.004
  • Zhu T, Hu L, Zhao X, et al. New insights into intrinsic point defects in V2VI3 thermoelectric materials. Adv Sci. 2016;3:1600004. doi:10.1002/advs.201600004
  • Satterthwaite CB, Ure RW. Electrical and thermal properties of Bi2Te3. Phys Rev. 1957;108:1164–1170. doi:10.1103/PhysRev.108.1164
  • Yoo I, Myung NV, Lim DC, et al. Electrodeposition of BixTey thin films for thermoelectric application. Thin Solid Films. 2013;546:48–52. doi:10.1016/j.tsf.2013.05.036
  • Ma LS, Zhang Q, Zhao QQ, et al. Synthesis and characterization of Bi2Te3/Te superlattice nanowire arrays. J Nanosci Nanotechnol. 2016;16:1207–1210. doi:10.1166/jnn.2016.10698
  • Li WJ, Yu WL, Yen CY. Pulsed electrodeposition of Bi2Te3 and Bi2Te3/Te nanowire arrays from a DMSO solution. Electrochim Acta. 2011;58:510–515. doi:10.1016/j.electacta.2011.09.075
  • Horak J, Čermák K, Koudelka L. Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals. J Phys Chem Solids. 1986;47:805–809. doi:10.1016/0022-3697(86)90010-7
  • Zhang M, Liu W, Zhang C, et al. Evolution of atomic structure and electronic transport properties in n-type Bi2Te3 films via Bi2 planar defects. Appl Phys Lett. 2021;118:103901. doi:10.1063/5.0045518
  • Bakavets A, Aniskevich Y, Yakimenko O, et al. Pulse electrodeposited bismuth-tellurium superlattices with controllable bismuth content. J Power Sources. 2020;450:227605–227613. doi:10.1016/j.jpowsour.2019.227605
  • Medlin DL, Erickson KJ, Limmer SJ, et al. Dissociated 1/3 〈0111〉dislocations in Bi2Te3 and their relationship to seven-layer Bi3Te4 defects. J Mater Sci. 2014;49:3970–3979. doi:10.1007/s10853-014-8035-4
  • Golgovici F, Visan T. Electrochemical deposition of BiTe films from choline chloride–malonic acid mixture as ionic liquid. Chalcogenide Lett. 2012;10:427–434.
  • Hirofumi E, Mikito U, Toshiaki O. Electrodeposition of Sb, Bi, Te, and their alloys in AlCl3–NaCl–KCl molten salt. Electrochim Acta. 2007;53:100–105. doi:10.1016/j.electacta.2007.03.017
  • Yamaguchi M, Yamamuro H, Takashiri M. Characteristics of electrodeposited bismuth telluride thin films with different crystal growth by adjusting electrolyte temperature and concentration. Curr Appl Phys. 2018;18:1513–1522. doi:10.1016/j.cap.2018.09.008
  • Lee T, Lee JW, Park KT, et al. Nanostructured inorganic chalcogenide-carbon nanotube yarn having a high thermoelectric power factor at low temperature. ACS Nano. 2021;15:13118–13128. doi:10.1021/acsnano.1c02508
  • Bando H, Koizumi K, Oikawa Y, et al. The time-dependent process of oxidation of the surface of Bi2Te3 studied by x-ray photoelectron spectroscopy. J Phys-Condens Mat. 2000;12:5607–5616. doi:10.1088/0953-8984/12/26/307
  • Abdelnabi AA, Lakhian V, McDermid J, et al. The effect of powder pre-treatment on the mechanical and thermoelectric properties of spark plasma sintered N-type bismuth telluride. J Alloy Compd. 2021;874:159782. doi:10.1016/j.jallcom.2021.159782
  • Jung M, Ji M, Han JH, et al. Atomic layer deposition of ZnO layers on Bi2Te3 powders: comparison of gas fluidization and rotary reactors. Ceram Int. 2022. doi:10.1016/j.ceramint.2022.08.241
  • Schultz JM, McHugh JP, Tiller WA. Effects of heavy deformation and annealing on the electrical properties of Bi2Te3. J Appl Phys. 1962;33:2443–2450. doi:10.1063/1.1728990
  • Horio Y, Inoue A. Effect of oxygen content on thermoelectric properties of n-type (Bi,Sb)2(Te,Se)3 alloys prepared by rapid solidification and hot-pressing techniques. Mater Trans. 2006;47:1412–1416. doi:10.2320/matertrans.47.1412
  • Takashiri M, Makioka T, Yamamuro H. Promotion of crystal growth in as-grown Bi2Te3 electrodeposited films without micro-pores using sputtered Bi2Te3 seed layers deposited on a glass substrate. J Alloy Compd. 2018;764:802–808. doi:10.1016/j.jallcom.2018.06.143
  • Music D, Chang KK, Schmidt P, et al. On atomic mechanisms governing the oxidation of Bi2Te3. J Phys: Condens Matter. 2017;29:485705. doi:10.1088/1361-648X/aa945f
  • Rashid M, Chung G. Effect of deposition conditions on the microstructure and the thermoelectric properties of galvanostatically electrodeposited Bi2Te3 film. Surf Rev Lett. 2013;20:1350044–1350052. doi:10.1142/S0218625X13500443
  • Soliman H, Kashyout AHB. Electrochemical deposition and optimization of thermoelectric nanostructured bismuth telluride thick films. Engineering. 2011;3:659–667. doi:10.4236/eng.2011.36079
  • Frano B. PEM fuel cells. Academic Press; 2013. doi:10.1016/B978-0-12-387710-9.00002-3
  • Sablani SS, Goosen MFA, Al-Belushi R, et al. Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalination. 2001;141:269–289. doi:10.1016/S0011-9164(01)85005-0
  • Li M, Anand RK. Recent advancements in ion concentration polarization. Analyst. 2016;141:3496–3510. doi:10.1039/c6an00194g
  • Bu L, Wang W, Wang H. Effect of the substrate on the electrodeposition of Bi2Te3–ySey thin films. Mater Res Bull. 2008;43:1808–1813. doi:10.1016/j.materresbull.2007.07.002
  • Tittes K, Bund A, Plieth W, et al. Electrochemical deposition of Bi2Te3 for thermoelectric microdevices. J Solid State Electr. 2003;7:714–723. doi:10.1007/s10008-003-0378-8
  • Wu M, Ramírez SA, Shafahian E, et al. Electrodeposition of bismuth telluride thin films containing silica nanoparticles for thermoelectric applications. Electrochim Acta. 2017;253:554–562. doi:10.1016/j.electacta.2017.09.012
  • Thorat JB. Surface deformation study of the electrodeposited nanostructured Bi2Te3 and Sb2Te3 thin films by double-exposure digital holographic interferometry. Phys Status Solidi A. 2019;216:1800661–1800672. doi:10.1002/pssa.201800661
  • Patil PB, Mali SS, Kondalkar VV, et al. Morphologically controlled electrodeposition of fern shaped Bi2Te3 thin films for photoelectrochemical performance. J Electroanal Chem. 2015;758:178–190. doi:10.1016/j.jelechem.2015.09.019
  • Rashid MM, Cho KH, Chung G. Rapid thermal annealing effects on the microstructure and the thermoelectric properties of electrodeposited Bi2Te3 film. Appl Surf Sci. 2013;279:23–30. doi:10.1016/j.apsusc.2013.03.112
  • Nguyen T, Kei S, Nguyen T, et al. Synthesis and evaluation of thick films of electrochemically deposited Bi2Te3 and Sb2Te3 thermoelectric materials. Materials (Basel). 2017;10:154. doi:10.3390/ma10020154
  • Yamamuro H, Hatsuta N, Wachi M, et al. Combination of electrodeposition and transfer processes for flexible thin-film thermoelectric generators. Coatings. 2018;8:22–31. doi:10.3390/coatings8010022
  • Zhou A, Fu Q, Zhang W, et al. Enhancing the thermoelectric properties of the electroplated Bi2Te3 films by tuning the pulse off-to-on ratio. Electrochim Acta. 2015;178:217–224. doi:10.1016/j.electacta.2015.07.164
  • Hernandez-Flores G, Poggi-Varaldo HM, Solorza-Feria O, et al. Tafel equation based model for the performance of a microbial fuel cell. Int J Hydrogen Energy. 2015;40:17421–17432. doi:10.1016/j.ijhydene.2015.06.119
  • Corović S, Pavlin M, Miklavcic D. Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations. Biomed Eng Online. 2007;6:37–37. doi:10.1186/1475-925X-6-37
  • Negi AS, Anand SC. A textbook of physical chemistry. New Age International; 1985. doi:10.1016/B978-0-12-044262-1.X5001-4
  • Nguyen TH, Enju J, Ono T. Enhancement of thermoelectric properties of bismuth telluride composite with gold nano-particles inclusions using electrochemical Co-deposition. J Electrochem Soc. 2019;166:D508–D513. doi:10.1149/2.1011912jes
  • Yoo IJ, Lim DC, Myung NV, et al. Electrical/thermoelectric characterization of electrodeposited Bix Sb2–xTe3 thin films. Electron Mater Lett. 2013;9:687–691. doi:10.1007/s13391-013-2246-8
  • Frantz C, Stein N, Gravier L, et al. Electrodeposition and characterization of bismuth telluride nanowires. J Electron Mater. 2010;39:2043–2048. doi:10.1007/s11664-009-1001-2
  • Hammerich O. Organic electrochemistry. Boca Raton (FL): CRC Press; 2016. doi:10.1201/9781420029659
  • Sankara P. Techniques for corrosion monitoring. Woodhead Publishing; 2008; doi:10.1533/9781845694050.1.49
  • Conway BE, Wilkinson DP. Non-isothermal cell potentials and evaluation of entropies of ions and of activation for single electrode processes in non-aqueous media. Electrochim Acta. 1993;38:997–1013. doi:10.1016/0013-4686(93)87020-E
  • Zhou J, Lin QH, Li HY, et al. Phosphorus-doped bismuth telluride films by electrodeposition. Mater Chem Phys. 2013;141:401–405. doi:10.1016/j.matchemphys.2013.05.033
  • Zou ZG, Cai KF, Chen S, et al. Pulsed electrodeposition and characterization of Bi2Te3–ySey film. Mater Res Bull. 2012;47:3292–3295. doi:10.1016/j.materresbull.2012.07.036
  • Agapescu C, Cojocaru A, Cotarta A, et al. Electrodeposition of bismuth, tellurium, and bismuth telluride thin films from choline chloride–oxalic acid ionic liquid. J Appl Electrochem. 2013;43:309–321. doi:10.1007/s10800-012-0487-0
  • Zhu W, Yang JY, Gao XH, et al. Growth of bismuth telluride thin film on Pt by electrochemical atomic layer epitaxy. Trans Nonferr Metal Soc. 2005;15:404–409.
  • Zhou AJ, Wang WH, Yao X, et al. Impact of the film thickness and substrate on the thermopower measurement of thermoelectric films by the potential-seebeck microprobe (PSM). Appl Therm Eng. 2016;107:552–559. doi:10.1016/j.applthermaleng.2016.05.037
  • Reinsberg KG, Schumacher C, Tempez A, et al. Depth-profile analysis of thermoelectric layers on Si wafers by pulsed r.f. glow discharge time-of-flight mass spectrometry. Spectrochim Acta B. 2012;76:175–180. doi:10.1016/j.sab.2012.06.005
  • Cao Y, Zeng ZG, Liu YL, et al. Electrodeposition and thermoelectric characterization of (00L)-oriented Bi2Te3 thin films on silicon with seed layer. J Electrochem Soc. 2013;160:D565–D569. doi:10.1149/2.099311jes
  • Ma Y, Ahlberg E, Sun Y, et al. Thermoelectric characteristics of electrochemically deposited Bi2Te3 and Sb2Te3 thin films of relevance to multilayer preparation. J Electrochem Soc. 2011;159:D50–D58. doi:10.1149/2.033202jes
  • Yoo BY, Huang CK, Lim JR, et al. Electrochemically deposited thermoelectric n-type Bi2Te3 thin films. Electrochim Acta. 2005;50:4371–4377. doi:10.1016/j.electacta.2005.02.016
  • Puneet P, Podila R, Karakaya M, et al. Preferential scattering by interfacial charged defects for enhanced thermoelectric performance in few-layered n-type Bi2Te3. Sci Rep-UK. 2013;3:1–7. doi:10.1038/srep03212
  • Lal S, Gautam D, Razeeb KM. Optimization of annealing conditions to enhance thermoelectric performance of electrodeposited p-type BiSbTe thin films. Apl Mater. 2019;7:31102–31109. doi:10.1063/1.5049586
  • Hamdou B, Kimling J, Dorn A, et al. Thermoelectric characterization of bismuth telluride nanowires, synthesized via catalytic growth and post-annealing. Adv Mater. 2013;25:239–244. doi:10.1002/adma.201202474
  • Nishizawa JI. Growth and crystal properties of Ti-doped PbTe crystals grown by Bridgman method under Pb and Te vapor pressure. J Cryst Growth. 2001;222:38–43. doi:10.1016/S0022-0248(00)00875-7
  • Suto K, Nishizawa J, Yasuda A. Calculation of the optimum vapor pressure for stoichiometry in PbTe and PbSnTe. Mat Sci Semicon Proc. 2003;6:289–292. doi:10.1016/j.mssp.2003.08.022
  • Rostek R, Sklyarenko V, Woias P. Influence of vapor annealing on the thermoelectric properties of electrodeposited Bi2Te3. J Mater Res. 2011;26:1785–1790. doi:10.1557/jmr.2011.141
  • Ma Y, Wijesekara W, Palmqvist AE. Electrochemical deposition and characterization of thermoelectric ternary (BixSb1–x)2Te3 and Bi2(Te1–ySey)3 thin films. J Electron Mater. 2012;41:1138–1146. doi:10.1007/s11664-011-1790-y
  • Yamamuro H, Takashiri M. Power generation in slope-type thin-film thermoelectric generators by the simple contact of a heat source. Coatings. 2019;9:63–71. doi:10.3390/coatings9020063
  • Kim J, Lee KH, Kim SW, et al. Potential-current co-adjusted pulse electrodeposition for highly (110)-oriented Bi2Te3-xSex films. J Alloy Compd. 2019;787:767–771. doi:10.1016/j.jallcom.2019.01.301
  • Eguchi R, Yamamuro H, Takashiri M. Enhanced thermoelectric properties of electrodeposited Bi2Te3 thin films using TiN diffusion barrier layer on a stainless-steel substrate and thermal annealing. Thin Solid Films. 2020;714:138356–138312. doi:10.1016/j.tsf.2020.138356
  • Lal S, Gautam D, Razeeb KM. The impact of surfactant sodium dodecyl sulfate on the microstructure and thermoelectric properties of p-type (Sb1–xBix)2Te3 electrodeposited films. ECS J Solid State Sci. 2017;6:N3017–N3021. doi:10.1149/2.0041703jss
  • Wang C, Hsieh H, Sun Z, et al. Interfacial stability in Bi2Te3 thermoelectric joints. ACS Appl Mater Inter. 2020;12:27001–27009. doi:10.1021/acsami.9b22853
  • Koike J, Wada M. Self-forming diffusion barrier layer in Cu–Mn alloy metallization. Appl Phys Lett. 2005;87:041911. doi:10.1063/1.1993759
  • Nicolet MA. Diffusion barriers in thin films. Thin Solid Films. 1978;52:415–443. doi:10.1016/0040-6090(78)90184-0
  • Li W, Yan X, Aberle AG, et al. Effect of a TiN alkali diffusion barrier layer on the physical properties of Mo back electrodes for cigs solar cell applications. Curr Appl Phys. 2017;17:1747–1753. doi:10.1016/j.cap.2017.08.021
  • Woo HJ, Lee WJ, Koh EK, et al. Plasma-enhanced atomic layer deposition of TiN thin films as an effective Se diffusion barrier for cigs solar cells. Nanomaterials-Basel. 2021;11:370. doi:10.3390/nano11020370
  • Sato M, Kitada H, Takeyama MB. Characterization of tin films sputter-deposited at low temperatures for Cu-through-silicon via. Jpn J Appl Phys. 2019;58:SBBC03. doi:10.7567/1347-4065/ab01d9
  • Qu Z, Wang W, Li X, et al. Measurement and error analysis of Cu film thickness with ta barrier layer on wafer for cmp application. IEEE Trans Instrum Meas. 2021;70:1–10. doi:10.1109/TIM.2020.3017057
  • Tseng SC, Lee TC, Tsai HY. Diffusion effect for the catalytic growth of carbon nanotubes on metal alloys substrate. Diam Relat Mater. 2019;96:112–117. doi:10.1016/j.diamond.2019.04.020
  • Boulat L, Viennois R, Oliviero E, et al. Study of TaN and TaN-Ta-TaN thin films as diffusion barriers in CeFe4Sb12 skutterudite. J Appl Phys. 2019;126:125306. doi:10.1063/1.5105385
  • Xu H, Hu ZJ, Qu XP, et al. Effect of thickness scaling on the permeability and thermal stability of Ta(N) diffusion barrier. Appl Surf Sci. 2019;498:143887. doi:10.1016/j.apsusc.2019.143887
  • Hsu KF, Loo S, Guo F, et al. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science. 2004;303:818–821. doi:10.1126/science.1092963
  • Wang Y, Zhang J, Shen Z, et al. Preparation of Bi2Te3/nano-SiC composite thermoelectric films by electrodeposition. J Electron Mater. 2015;44:2166–2171. doi:10.1007/s11664-015-3747-z
  • Han X, Wei W. Synthesis and characterization of CNTs/Bi2Te3 thermoelectric nanocomposites. Int J Electrochem Sci. 2013;8:6686–6691.
  • Gayner C, Amouyal Y. Energy filtering of charge carriers: current trends, challenges, and prospects for thermoelectric materials. Adv Funct Mater. 2020;30:1901789. doi:10.1002/adfm.201901789
  • Yaprintsev M, Vasil’ev A, Ivanov O, et al. Forming the locally-gradient Ni@NiTe2 domains from initial Ni inclusions embedded into thermoelectric Bi2Te3 matrix. Mater Lett. 2021;290:129451. doi:10.1016/j.matlet.2021.129451
  • Kfsa B, Nht A, To A. Enhancement in thermoelectric performance of electrochemically deposited platinum-bismuth telluride nanocomposite. Electrochim Acta. 2019;312:62–71. doi:10.1016/j.electacta.2019.04.139
  • Eigler S, Enzelberger-Heim M, Grimm S, et al. Wet chemical synthesis of graphene. Adv Mater. 2013;25:3583–3587. doi:10.1002/adma.201300155
  • Zong P, Liang J, Zhang P, et al. Graphene-based thermoelectrics. ACS Appl Energy Mater. 2020;3:2224–2239. doi:10.1021/acsaem.9b02187
  • Zong P, Hanus R, Dylla M, et al. Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy Environ Sci. 2017;10:183–191. doi:10.1039/c6ee02467j
  • Xu H, Wang W. Electrodeposition of MWNT/Bi2Te3 composite thermoelectric films. J Electron Mater. 2013;42:1936–1945. doi:10.1007/s11664-013-2479-1
  • Li A, Fu C, Zhao X, et al. High-performance Mg3Sb2-x Bix thermoelectrics: progress and perspective. Research. 2020;2020:1–22. doi:10.34133/2020/1934848
  • Pallecchi I, Pani M, Ricci F, et al. Thermoelectric properties of chemically substituted full-Heusler Fe2TiSn1–xSbx (x = 0, 0.1, and 0.2) compounds. Phys Rev Mater. 2018;2:075403. doi:10.1103/PhysRevMaterials.2.075403
  • Wang Z, Akao T, Onda T, et al. Formation of Te-rich phase and its effect on microstructure and thermoelectric properties of hot-extruded Bi-Te-Se bulk materials. J Alloy Compd. 2016;684:516–523. doi:10.1016/j.jallcom.2016.05.232
  • Jang J, Min BK, Kim BS, et al. Development of p-type Bi2-xSbxTe3 thermoelectric materials for power generation application exploiting synergetic effect of Sb alloying and repress process. Appl Surf Sci. 2020;508:145236–145242. doi:10.1016/j.apsusc.2019.145236
  • Kim HS, Heinz NA, Gibbs ZM, et al. High thermoelectric performance in (Bi0. 25Sb0. 75)2Te3 due to band convergence and improved by carrier concentration control. Mater Today. 2017;20:452–459. doi:10.1016/j.mattod.2017.02.007
  • Hori T, Shiomi J. Tuning phonon transport spectrum for better thermoelectric materials. Sci Technol Adv Mater. 2019;20:10–25. doi:10.1080/14686996.2018.1548884
  • Witting IT, Ricci F, Chasapis TC, et al. The thermoelectric properties of n-type bismuth telluride: bismuth selenide alloys. Research. 2020;2020:1–15. doi:10.34133/2020/4361703
  • Sootsman J, Chung D, Kanatzidis M. New and old concepts in thermoelectric materials. Angew Chem Int Edit. 2009;48:8616–8639. doi:10.1002/anie.200900598
  • Li L, Xu S, Li G. Enhancement of thermoelectric properties in Bi-Sb-Te alloy nanowires by pulsed electrodeposition. Energy Technol-Ger. 2015;3:825–829. doi:10.1002/ente.201500071
  • Lim S, Kim M, Oh T. Thermoelectric properties of the bismuth-antimony-telluride and the antimony-telluride films processed by electrodeposition for micro-device applications. Thin Solid Films. 2009;517:4199–4203. doi:10.1016/j.tsf.2009.02.005
  • Lei C, Ryder KS, Koukharenko E, et al. Electrochemical deposition of bismuth telluride thick layers onto nickel. Electrochem Commun. 2016;66:1–4. doi:10.1016/j.elecom.2016.02.005
  • Kang WS, Chou WC, Li WJ, et al. Electrodeposition of Bi2Te3-based p and n-type ternary thermoelectric compounds in chloride baths. Thin Solid Films. 2018;660:108–119. doi:10.1016/j.tsf.2018.06.001
  • Li F, Wang W. Electrodeposition of BixSb2–xTey thermoelectric thin films from nitric acid and hydrochloric acid systems. Appl Surf Sci. 2009;255:4225–4231. doi:10.1016/j.apsusc.2008.11.013
  • Feng X, Hangarter C, Yoo B, et al. Recent progress in electrodeposition of thermoelectric thin films and nanostructures. Electrochim Acta. 2008;53:8103–8117. doi:10.1016/j.electacta.2008.06.015
  • Zhang Q, Fang T, Liu F, et al. Tuning optimum temperature range of Bi2Te3 based thermoelectric materials by defect engineering. Chem-Asian J. 2020;15:2775–2792. doi:10.1002/asia.202000793
  • Fang T, Li X, Hu C, et al. Complex band structures and lattice dynamics of Bi2Te3-based compounds and solid solutions. Adv Funct Mater. 2019;29:1900677. doi:10.1002/adfm.201900677
  • Chen J, Zhou X, Uher C, et al. Structural modifications and non-monotonic carrier concentration in Bi2Se0.3Te2.7 by reversible electrochemical lithium reactions. Acta Mater. 2013;61:1508–1517. doi:10.1016/j.actamat.2012.11.028
  • Pan Y, Aydemir U, Sun FH, et al. Self-tuning n-type Bi2(Te, Se)3/SiC thermoelectric nanocomposites to realize high performances up to 300°C. Adv Sci. 2017;4:1700259. doi:10.1002/advs.201700259
  • Nolas GS, Sharp J, Goldsmid J. Thermoelectrics: basic principles and new materials developments. Vol. 45. Springer Science & Business Media; 2001. https://doi.org/10.1007/978-3-662-04569-5
  • Wang W, Ji Y, Xu H, et al. A high packing density micro-thermoelectric power generator based on film thermoelectric materials fabricated by electrodeposition technology. Surf Coat Tech. 2013;231:583–589. doi:10.1016/j.surfcoat.2012.04.048
  • Kao PH, Shih PJ, Dai CL, et al. Fabrication and characterization of CMOS-MEMS thermoelectric micro generators. Sensors. 2010;10:1315–1325. doi:10.3390/s100201315
  • Lal S, Gautam D, Razeeb KM. Fabrication of micro-thermoelectric cooler for the thermal management of photonic devices. IEEE-NANO. 2018: 1–2. doi:10.1109/NANO.2018.8626304
  • Corbett S, Gautam D, Lal S, et al. Electrodeposited thin-film micro-thermoelectric coolers with extreme heat flux handling and microsecond time response. ACS Appl Mater Inter. 2021;13:1773–1782. doi:10.1021/acsami.0c16614
  • Chung SH, Kim JT, Kim H, et al. High-temperature Bi2Te3 thermoelectric generator fabricated using Cu nanoparticle paste bonding. J Alloy Compd. 2022;896:163060. doi:10.1016/j.jallcom.2021.163060
  • Jiang CP, Fan X, Rong ZZ, et al. Elemental diffusion and service performance of Bi2Te3-based thermoelectric generation modules with flexible connection electrodes. J Electron Mater. 2017;46:1363–1370. doi:10.1007/s11664-016-5135-8
  • Tan M, Deng Y, Hao Y. Enhanced thermoelectric performance of a highly ordered vertical Bi0.5Sb1.5Te3 pillar array device with optimized interconnect. Sci Adv Mater. 2015;6:1076–1082. doi:10.1166/sam.2015.2151
  • Morgan KA, Tang T, Zeimpekis I, et al. High-throughput physical vapour deposition flexible thermoelectric generators. Sci Rep-Uk. 2019;9:4393–4401. doi:10.1038/s41598-019-41000-y
  • Wu Z, Mu E, Wang Z, et al. Bi2Te3 nanoplates’ selective growth morphology on different interfaces for enhancing thermoelectric properties. Cryst Growth Des. 2019;19:3639–3646. doi:10.1021/acs.cgd.8b01632
  • Snyder GJ, Lim JR, Huang CK, et al. Thermoelectric microdevice fabricated by a mems-like electrochemical process. Nat Mater. 2003;2:528–531. doi:10.1038/nmat943
  • Yan J, Liao X, Yan D, et al. Review of micro thermoelectric generator. J Microelectromech Syst. 2018;27:1–18. doi:10.1109/JMEMS.2017.2782748
  • Lal S, Gautam D, Razeeb KM. Fabrication of micro-thermoelectric devices for power generation and the thermal management of photonic devices. J Micromech Microeng. 2019;29:065015. doi:10.1088/1361-6439/ab18f1
  • Liu S, Hu B, Liu D, et al. Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference. Appl Energy. 2018;225:600–610. doi:10.1016/j.apenergy.2018.05.056
  • Roth R, Rostek R, Cobry K, et al. Design and characterization of micro thermoelectric cross-plane generators with electroplated Bi2Te3, SbxTey, and reflow soldering. J Microelectromech Syst. 2014;23:961–971. doi:10.1109/JMEMS.2014.2303198
  • Zhang W, Yang J, Xu D. A high power density micro-thermoelectric generator fabricated by an integrated bottom-up approach. J Microelectromech Syst. 2016;25:744–749. doi:10.1109/JMEMS.2016.2565504
  • Kim MY, Oh TS. Thermoelectric power generation characteristics of a thin-film device consisting of electrodeposited n-Bi2Te3 and p-Sb2Te3 thin-film legs. J Electron Mater. 2013;42:2752–2757. doi:10.1007/s11664-013-2671-3
  • Nguyen HT, Nguyen VT, Takahito O. Flexible thermoelectric power generator with Y-type structure using electrochemical deposition process. Appl Energy. 2018;210:467–476. doi:10.1016/j.apenergy.2017.05.005
  • Pelz U, Jaklin J, Rostek R, et al. Fabrication process for micro thermoelectric generators (μTEGs). J Electron Mater. 2016;45:1502–1507. doi:10.1007/s11664-015-4088-7
  • Tanwar A, Lal S, Razeeb KM. Structural design optimization of micro-thermoelectric generator for wearable biomedical devices. Energies. 2021;14:2339–2351. doi:10.3390/en14082339
  • O’Dwyer C, Chen R, He J, et al. Scientific and technical challenges in thermal transport and thermoelectric materials and devices. ECS J Solid State Sci Technol. 2017;6:N3058–N3064. doi:10.1149/2.0091703jss
  • Yazawa K, Shakouri A. Cost-efficiency trade-off and the design of thermoelectric power generators. Environ Sci Technol. 2011;45:7548–7553. doi:10.1021/es2005418
  • Uda K, Seki Y, Saito M, et al. Fabrication of π-structured Bi–Te thermoelectric micro-device by electrodeposition. Electrochim Acta. 2015;153:515–522. doi:10.1016/j.electacta.2014.12.019
  • Li G, Fernandez JG, Lara Ramos DA, et al. Integrated microthermoelectric coolers with rapid response time and high device reliability. Nat Electron. 2018;1:555–561. doi:10.1038/s41928-018-0148-3
  • Younes E, Christofferson J, Maize K, et al. Short time transient behavior of SiGe-based microrefrigerators. MRS Proc. 2009;1166:1166–N01–06. doi:10.1557/PROC-1166-N01-06
  • Wang CH, Hsieh HC, Lee HY, et al. Co-P diffusion barrier for p-Bi2Te3 thermoelectric material. J Electron Mater. 2019;48:53–57. doi:10.1007/s11664-018-6633-7
  • Cardinal T, Kwan M, Borca-Tasciuc T, et al. Multifold electrical conductance enhancements at metal-bismuth telluride interfaces modified using an organosilane monolayer. ACS Appl Mater Inter. 2017;9:2001–2005. doi:10.1021/acsami.6b12488

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.