73
Views
0
CrossRef citations to date
0
Altmetric
Translated Articles

Change in Charpy impact toughness and carbide precipitation after ageing heat treatment of high Mn austenitic steel

, , , , , , , & show all

References

  • Sasaki T, Watanabe K, Nohara K, et al. Physical and mechanical properties of high manganese non-magnetic steel and its application to various products for commercial use. Trans Iron Steel Inst Jpn. 1982;22(12):1010–1020. in Japanese.
  • Ueda K, Izumi D, Nakashima K, et al. Technical review on the welding technology and properties of high manganese steels. Proceedings of the 29th International Ocean and Polar Engineering Conference (ISOPE), Greece; 2019. p. 528–532.
  • Tomota Y. Phase transformation, microstructure, and mechanical behaviour in Fe-Mn alloys. Tetsu-to-Hagane. 1991;77:315–325. in Japanese.
  • Tomota Y, Strum M, Morris JW Jr. The relationship between toughness and microstructure in Fe-high Mn binary alloys. Metall Mater Trans A. 1987;18A:1073–1081.
  • Strum M, Morris JW Jr. Influence of post-anneal cooling treatments on suppression of cryogenic intergranular fracture in experimental Ni free high Mn austenitic steels. Adv Cryog Eng Mater. 1988;34:371–378.
  • Xue KS, Rong ZL, Jing XM, et al. The improvement of low temperature toughness of high manganese austenitic steels. Adv Cryog Eng Mater. 1988;34:501.
  • Takaki S, Furuya T, Tokunaga Y. Effect of Si and Al additions on the low temperature toughness and fracture mode of Fe-27Mn alloys. ISIJ Inter. 1990;30:632–638.
  • Sawa S. Recent non-magnetic high manganese steels. Bull Japan Inst Met. 1979;18:573–581. in Japanese.
  • Koyama M, Sawaguchi T, Tsuzaki K. Deformation twinning behaviour of twinning-induced plasticity steels with different carbon concentrations. Tetsu-to-Hagane. 2014;100:1246–1252. in Japanese.
  • Nohara K, Habu Y. Cryogenic non-magnetic high Mn steel for accelerator superconducting magnet. Kawasaki Steel Giho. 1989;21: 245–249. in Japanese.
  • Ouchi C, Sampei T, Osuka T, et al. Workability of non-magnetic low carbon high manganese steels. Nippon Kokan Giho. 1981;88: 15–26. in Japanese.
  • Ohtani H, Miura M, Okada Y, et al. Various properties and products of high manganese non-magnetic steels. Sumitomo Metal Tech Rep. 1981;33(1): 1–14. in Japanese.
  • Masumoto H, Suemune K, Yoshimura H, et al. Development of a high-manganese steels. Seitetsu Kenkyu. 1982;309: 47–59. in Japanese.
  • Ohtani Y, Okada Y, Miura M, et al. Carbide precipitation of high Mn non-magnetic steel for toughness and corrosion resistance. Tetsu-to-Hagane. 1981;67: A89–A92. in Japanese.
  • Araki H, Abe F, Noda T. Grain boundary embrittlement due to carbide precipitation in high-Mn austenitic steels for fusion reactor structures. J Japan Inst Met Mater. 1989;53:964–971.
  • Saito T. Effect of alloying elements on carbide precipitation in Hadfield steel. Tetsu-to-Hagane. 1972;58(3):423–433. in Japanese.
  • Ono Y, Tsuchiyama T, Takaki S. Microstructural change during isothermal aging in high manganese austenitic steels. Tetsu-to-Hagane. 1998;84(4):309–314. in Japanese.
  • Kim H, Park J, Jung JE, et al. Interpretation of cryogenic-temperature Charpy fracture initiation and propagation energies by microstructural evolution occurring during dynamic compressive test of austenitic Fe–(0.4, 1.0)C–18Mn steels. Mate Sci Eng, A. 2015;641:340–347.
  • Luo Q, Wang HH, Li GQ, et al. On mechanical properties of novel high-Mn cryogenic steel in terms of SFE and microstructural evolution. Mater Sci Eng A. 2019;753:91–98.
  • Remy L, Pineau A. Twinning and Strain-induced F.C.C → H.C.P. Transformation in the Fe-Mn-Cr-C system. Mat Sci Eng. 1977;28:99–107.
  • Koyama M, Sawaguchi T, Tsuzaki K. TWIP effect and plastic instability condition in an Fe-Mn-C austenitic steel. ISIJ Inter. 2013;53:323–329.
  • Steinmetz DR, Japel T, Wietbrock B, et al. Revealing the strain-hardening behavior of twinning-induced plasticity steels: theory, simulations, experiments. Acta Materialia. 2013;61:494–510.
  • Hirth JP. Thermodynamics of stacking faults. Metall Trans A. 1970;1A:2367–2374.
  • Allain S Caractérisation et modélisation thermomécaniques multi-échelles des mécanismes de déformation et d’écrouissage d’aciers austénitiques à haute teneur en manganèse-Application a l’effet TWIP [Ph.D. thesis]. France: INPL, Ecole des Mines de Nancy; 2004.
  • Allain S, Chateau JP, Bouaziz O, et al. A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel. Mater Sci Eng A. 2004;387-389:143–147.
  • Allain S, Chateau JP, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys. Mater Sci Eng A. 2004;387-389:158.
  • Kotani S. Effect of loading rate in reinforced concrete. Concr J. 1983;21:23–34. in Japanese.
  • Nagamine N, Shima H. Effect of strain rate on constitutive rule of steel after yield under alternating cyclic loading. Proc Japan Concr Insti. 2003;25: 133–138. in Japanese.
  • Maeda K, Tanaka A, Masuda H. Strain rate of steel structural frame during earthquake. Summaries Tech Pap Annu Meeting Archit Inst Japan. 1997;823–824. in Japanese.
  • WES-TR28008. 2000. Method for assessment of brittle fracture in steel weldments subjected to cyclic and dynamic large strain. (in Japanese)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.