315
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of heat input on bead profile and microstructure characteristics in laser and laser-hybrid welding of Inconel 617 alloy

, &
Pages 256-270 | Received 24 Nov 2021, Accepted 03 Apr 2022, Published online: 22 Apr 2022

References

  • Hosseini HS, Shamanian M, Kermanpur A. Characterization of microstructures and mechanical properties of inconel 617/310 stainless steel dissimilar welds. J Mater Charact. 2011;62(4):425–431.
  • Rao CV, Srinivas NS, Sastry GVS, et al. Low cycle fatigue, deformation and fracture behaviour of inconel 617 alloy. Mater Sci Eng A. 2019;765:138286.
  • Ren W, Swimdeman R. A review paper on aging effects in alloy 617 for gen IV nuclear reactor applications. J Pressure Vessel Technol. 2009;131(2):24002.
  • Mathur A, Bhutani O, Jayakumar T, et al., editors. India's national A-USC mission—plan and progress. Materials Park (OH): ASM International; 2013.
  • David SA, Siefert J, DuPont J, et al. Weldability and weld performance of candidate nickel base superalloys for advanced ultrasupercritical fossil power plants part I: fundamentals. J Sci Technol Weld Join. 2015;20(7):532–552.
  • Klöwer J. Alloy 617 and derivatives. Materials for ultra-supercritical and advanced ultra-supercritical power plants. Amsterdam: Elsevier; 2017. p. 547–570.
  • Di Gianfrancesco A. Materials for ultra-supercritical and advanced ultra-supercritical power plants. Cambridge (MA): Woodhead Publishing; 2016.
  • Kessler B, Dittrich D, Brenner B, et al. Extension of the process limits in laser beam welding of thick-walled components using the laser Multi-Pass Narrow-Gap welding (Laser-MPNG) on the example of the nickel-based material alloy 617 occ. Weld World. 2021;65(7):1359–1371.
  • Bagger C, Olsen FO. Review of laser hybrid welding. J Laser Appl. 2005;17(1):2–14.
  • Ribic B, Palmer TA, DebRoy T. Problems and issues in laser-arc hybrid welding. Int Mater Rev. 2009;54(4):223–244.
  • Subashini L, Prabhakar KP, Gundakaram RC, et al. Single pass laser-arc hybrid welding of maraging steel thick sections. Mater Manuf Processes. 2016;31(16):2186–2198.
  • Subashini L, Prabhakar KP, Ghosh S, et al. Comparison of laser-MIG hybrid and autogenous laser welding of M250 maraging steel thick sections—understanding the role of filler wire addition. Int J Adv Manuf Technol. 2020;107(3-4):1581–1594.
  • Fink C, Zinke M. Welding of nickel-based alloy 617 using modified dip arc processes. Weld World. 2013;57(3):323–333.
  • Farahani E, Shamanian M, Ashrafizadeh F. A comparative study on direct and pulsed current gas tungsten arc welding of alloy 617. Int J Manuf Mater Sci. 2012;2(1):1.
  • Mageshkumar K, Kuppan P, Arivazhagan N. Characterization of microstructure and mechanical properties of nickel based superalloy 617 by pulsed current gas tungsten arc welding technique. Mater Res Express. 2018;5(6):066541.
  • Liu W, Lu F, Tang X, et al. The microstructure evolution and element segregation of inconel 617 alloy tungsten inert gas welded joint. J Mater Res. 2016;31(4):435–442.
  • Ren W, Lu F, Yang R, et al. A comparative study on fiber laser and CO2 laser welding of inconel 617. J Mater Des. 2015;76:207–214.
  • Moradi M, Ghoreishi M. Influences of laser welding parameters on the geometric profile of NI-base superalloy rene 80 weld-bead. Int J Adv Manuf Technol. 2011;55(1–4):205–215.
  • Benyounis KY, Olabi AG, Hashmi MSJ. Effect of laser welding parameters on the heat input and weld-bead profile. J Mater Process Technol. 2005;164–165:978–985.
  • Ren W, Lu F, Yang R, et al. Liquation cracking in fiber laser welded joints of inconel 617. J Mater Process Technol. 2015;226:214–220.
  • Osoba LO, Ojo OA. Influence of laser welding heat input on HAZ cracking in newly developed haynes 282 superalloy. Mater Sci Technol. 2012;28(4):431–436.
  • Yan F, Hu C, Zhang X, et al. Influence of heat input on HAZ liquation cracking in laser welded GH909 alloy. Opt Laser Technol. 2017;92:44–51.
  • Palanivel R, Dinaharan I, Laubscher RF, et al. Effect of Nd: YAG laser welding on microstructure and mechanical properties of incoloy alloy 800. Opt Laser Technol. 2021;140:107039.
  • Nishimoto K, Woo I, Ogita T, et al. Factors affecting HAZ cracking susceptibility of laser welds. Study of weldability of inconel 718 cast alloy (4th report). Weld Int. 2001;15(12):965–972.
  • Shinozaki K, Kuroki H, Luo X, et al. Effects of welding parameters on laser weldability of inconel 718. Study of laser weldability of Ni-base, heat-resistant superalloys (1st report). Weld Int. 1999;13(12):945–951.
  • Luo X, Shinozaki K, Kuroki H, et al. Analysis of temperature and elevated temperature plastic strain distributions in laser welding HAZ study of laser weldability of Ni‐base superalloys (report 5). Weld Int. 2002;16(5):385–392.
  • Gao Z. Numerical modeling to understand liquation cracking propensity during laser and laser hybrid welding (I). Int J Adv Manuf Technol. 2012;63(1–4):291–303.
  • Sathiya P, Abdul Jaleel MY, Katherasan D. Grey-based Taguchi method for optimization of bead geometry in laser bead-on-plate welding. Prod Eng Res Devel. 2010;4(5):465–476.
  • Dey V, Pratihar DK, Datta GL, et al. Optimization of bead geometry in electron beam welding using a genetic algorithm. J Mater Process Technol. 2009;209(3):1151–1157.
  • Hooda A, Dhingra A, Sharma S. Optimization of MIG welding process parameters to predict maximum yield strength in AISI 1040. Int J Mech Eng Robot Res. 2012;1(3):203–213.
  • Ruggiero A, Tricarico L, Olabi A, et al. Weld-bead profile and costs optimisation of the CO2 dissimilar laser welding process of low carbon steel and austenitic steel AISI316. J Optics Laser Technology. 2011;43(1):82–90.
  • Aqeel M, Shariff S, Gautam J, et al. Liquation cracking in inconel 617 alloy by laser and laser-arc hybrid welding. J Mater Manuf Process. 2021;36(8):904–915.
  • Kou S. Welding metallurgy. Hoboken (NJ): Wiley; 2003. p. 223–225.
  • Üstündağ Ö, Gook S, Gumenyuk A, et al. Hybrid laser arc welding of thick high-strength pipeline steels of grade X120 with adapted heat input. J Mater Process Technol. 2020;275:116358.
  • Fuerschbach PW. Measurement and prediction of energy transfer efficiency in laser beam welding. Weld J. 1996;75(1):197654.
  • Vandersluis E, Ravindran C. Comparison of measurement methods for secondary dendrite arm spacing. Metallogr Microstruct Anal. 2017;6(1):89–94.
  • Gao Z, Ojo O. Modeling analysis of hybrid laser-arc welding of single-crystal nickel-base superalloys. J Acta Materialia. 2012;60(6-7):3153–3167.
  • Ono M, Shinbo Y, Yoshitake A, et al. Development of laser-arc hybrid welding. Nkk Technical Report-Japanese Edition. 2002. p. 70–74.
  • Ragavendran M, Vasudevan M. Laser and hybrid laser welding of type 316L (N) austenitic stainless steel plates. J Mater Manuf Process. 2020;35(8):922–934.
  • Kik T, Górka J. Numerical simulations of laser and hybrid S700MC T-joint welding. J Mater. 2019;12(3):516.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.