64
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Hot corrosion and air oxidation behavior of pulsed current gas tungsten arc welded and CO2 laser beam welded SMO 254 at 800 °C

ORCID Icon & ORCID Icon
Pages 394-413 | Received 03 Jan 2022, Accepted 02 Jun 2022, Published online: 25 Jul 2022

References

  • Qurashi MS, Cui Y, Wang J, et al. Erosion and passivation of borated 254 SMO stainless steel in simulated flue gas desulfurization solution. Int J Electrochem Sci. 2020;15:2987–3002.
  • Pathak U, Taiwade RV, Balbande S. Weldability of bimetallic butt joint between hastelloy C-276 and advance austenitic stainless steel. Mater Today Proc. 2020;28:2547–2550.
  • Han Y, Wu H, Zhang W, et al. Constitutive equation and dynamic recrystallization behavior of as-cast 254SMO super-austenitic stainless steel. Mater Des. 2015;69:230–240.
  • Kim YS, Park S, Chang HY. Lifespan estimation of seal welded super stainless steels for water condenser of nuclear power plants. Met Mater Int. 2014;20(1):69–76.
  • Roshith P, Arivarasu M, Arivazhagan N, et al. Investigations on induced residual stresses, mechanical and metallurgical properties of CO2 laser beam and pulse current gas tungsten arc welded SMO 254. J Manuf Processes. 2019;44:81–90.
  • Roshith P, Arivarasu M. Hot corrosion studies on fully austenitic stainless steel in air oxidation and simulated waste heat incinerator environment at 600 °C, 650 °C and 700 °C. Mater Res Express. 2020;6(12):1265d1.
  • Olsson J. Modern stainless steels to combat chloride-induced localized corrosion. Infacon 6. 1992;2:211–215.
  • Pu E, Zheng W, Xiang J, et al. Hot working characteristic of superaustenitic stainless steel 254SMO. Acta Metall Sin. 2014;27(2):313–323.
  • Sampark P, Majhi GK. Deformation induced phase transformation of 304L stainless steel and its structural characterization 2013 [Doctoral dissertation].
  • Olsson J, Redmond JD. Application of UNS S 31254 austenitic stainless steel in power plants. CORROSION 91/505. Houston (TX): NACE. Per Copy$5; 1991.
  • Olsson J, Wallen B. Experience with a high molybdenum stainless steel in saline environments. Desalination. 1983;44(1–3):241–254.
  • Mariani FE, Aureliano RT, Casteletti LC, et al. Characterization and wear performance of borided AISI 304 and UNS S31254 stainless steels. Matls Perf Charact. 2017;6(4):20160096.
  • Wang SH, Huang CS, Lee WS, et al. Impact deformation behavior of duplex and superaustenitic stainless steels welds by split Hopkinson pressure bar. Met Mater Int. 2009;15(6):1007–1015.
  • Huang CS, Wang SH, Lee WS, et al. Dynamic impact behavior and ferrite variation of special stainless steels. Scr Mater. 2005;52(9):843–849.
  • Huang CS, Wang SH, Wu CC, et al. Comparison of strain ratio effect on cyclic plastic deformation for special stainless steels. Scr Mater. 2006;54(6):1181–1186.
  • Angel T. Formation of martensite in austenitic stainless steels. J Iron Steel Inst. 1954;177:165–174.
  • Chen S, Zhao M, Rong L. Effect of Ti content on the microstructure and mechanical properties of electron beam welds in Fe–Ni based alloys. Mater Sci Eng A. 2013;571:33–37.
  • Ravier G, Seibel O, Pratiwi AS, et al. Towards an optimized operation of the EGS Soultz-Sous-Forêts power plant (Upper Rhine Graben, France). In: Proceedings of the European Geothermal Congress; 2019.
  • Ram M, Kumar M, Ansari A, et al. Corrosion resistance of electroless Ni-P-SiC/Ni-P-TiO2-ZrO2 nano-coatings in paper mill bleach plant. Mater Today Proc. 2020;21:1200–1212.
  • Panagopoulos A, Loizidou M, Haralambous KJ. Stainless steel in thermal desalination and brine treatment: current status and prospects. Met Mater Int. 2020;26(10):1463–1482.
  • De Micheli L, Agostinho SM, Trabanelli G, et al. Susceptibility to stress corrosion cracking of 254SMO SS. Mat. Res. 2002;5(1):63–69.
  • Ovarfort R. Critical pitting temperature measurements of stainless steels with an improved electrochemical method. Corros Sci. 1989;29(8):987–993.
  • Abd El Meguid EA, Abd El Latif AA. Critical pitting temperature for type 254 SMO stainless steel in chloride solutions. Corros Sci. 2007;49(2):263–275.
  • Muthu SM, Arivarasu M. Oxidation and hot corrosion studies on Fe-based superalloy A-286 pulsed current GTA weldments in gas turbine environment. Mater Res Express. 2019;6(11):116577.
  • Khan MA, Sundarrajan S, Natarajan S, et al. Oxidation and hot corrosion behavior of nickel-based superalloy for gas turbine applications. Mater Manuf Processes. 2014;29(7):832–839.
  • Tsipas DN, Lefakis H, Rawlings RD, et al. Mechanical and oxidation properties of Ni3Al-based alloys. Mater Manuf Processes. 2001;16(1):127–140.
  • Stringer J. High-temperature corrosion of superalloys. Mater Sci Technol. 1987;3(7):482–493.
  • Arivazhagan N, Senthilkumaran K, Narayanan S, et al. Hot corrosion behavior of friction welded AISI 4140 and AISI 304 in K2SO–60% NaCl mixture. J Mater Sci Technol. 2012;28(10):895–904.
  • Ramkumar KD, Arivazhagan N, Narayanan S. Effect of filler materials on the performance of gas tungsten arc welded AISI 304 and Monel 400. Mater Des. 2012;40:70–79.
  • Arivazhagan N, Narayanan S, Singh S, et al. High temperature corrosion studies on friction welded low alloy steel and stainless steel in air and molten salt environment at 650 C. Mater Des. 2012;34:459–468.
  • Arivarasu M, Venkatesh Kannan M, Devendranath Ramkumar K, et al. Hot-corrosion resistance of dissimilar AISI 4340 and AISI 304L weldments in the molten salt environment at 600 °C. Corros Eng. 2017;52(2):114–123.
  • Linak WP, Wendt JO. Toxic metal emissions from incineration: mechanisms and control. Prog Energy Combust Sci. 1993;19(2):145–185.
  • Belevi H, Langmeier M. Factors determining the element behavior in municipal solid waste incinerators. 2. Laboratory experiments. Environ Sci Technol. 2000;34(12):2507–2512.
  • Morales M, Chimenos JM, Fernandez AI, et al. Materials selection for superheater tubes in municipal solid waste incineration plants. J Mater Eng Perform. 2014;23(9):3207–3214.
  • Valente T. Fireside corrosion of superheater materials in chlorine-containing flue gas. J Mater Eng Perform. 2001;10(5):608–613.
  • Morf LS, Brunner PH, Spaun S. Effect of operating conditions and input variations on the partitioning of metals in a municipal solid waste incinerator. Waste Manag Res. 2000;18(1):4–15.
  • Hjelmar O. Disposal strategies for municipal solid waste incineration residues. J Hazard Mater. 1996;47(1–3):345–368.
  • Bierman PM, Rosen CJ. Phosphate and trace metal availability from sewage-sludge incinerator ash. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America; 1994.
  • Krause HH. High temperature corrosion problems in waste incineration systems. JMES. 1986;7(4):322–332.
  • Mudgal D, Singh S, Prakash S. Hot corrosion behavior of some superalloys in a simulated incinerator environment at 900 °C. J Mater Eng Perform. 2014;23(1):238–249.
  • Liu HH, Cheng WJ, Wang CJ. The mechanism of oxide whisker growth and hot corrosion of hot-dipped Al–Si coated 430 stainless steels in air–NaCl (g) atmosphere. Appl Surf Sci. 2011;257(24):10645–10652.
  • Badaruddin M, Asmi D. High-temperature corrosion of aluminized-AISI 1020 steel with NaCl and Na2SO4 deposits. Bull Mater Sci. 2020;43(1):1–8.
  • Ciszak C, Popa I, Brossard JM, et al. NaCl induced corrosion of Ti-6Al-4V alloy at high temperature. Corros Sci. 2016;110:91–104.
  • Tsaur CC, Rock JC, Wang CJ, et al. The hot corrosion of 310 stainless steel with pre-coated NaCl/Na2SO4 mixtures at 750 C. Mater Chem Phys. 2005;89(2–3):445–453.
  • Buscaglia V, Nanni P, Bottino C. The mechanism of sodium sulphate-induced low temperature hot corrosion of pure iron. Corros Sci. 1990;30(4–5):327–349.
  • Otero E, Pardo A, Perez FJ, et al. Corrosion behavior of 12CrMoV steel in waste incineration environments: hot corrosion by molten chlorides. Oxid Met. 1998;49(5/6):467–484.
  • Rapp RA, Devan JH, Douglass DL, et al. High temperature corrosion in energy systems. Mater Sci Eng. 1981;50(1):1–7.
  • Srikanth S, Ravikumar B, Das SK, et al. Analysis of failures in boiler tubes due to fireside corrosion in a waste heat recovery boiler. Eng Fail Anal. 2003;10(1):59–66.
  • Ishitsuka T, Nose K. Stability of protective oxide films in waste incineration environment—solubility measurement of oxides in molten chlorides. Corros Sci. 2002;44(2):247–263.
  • Swithenbank J, Nasserzadeh V, Wasantakorn A, et al. Future integrated waste, energy and pollution management (WEP) systems exploit pyrotechnology. Process Saf Environ Protec. 2000;78(5):383–398.
  • Lai GY. High temperature corrosion of engineering alloys. ASM; 1990.
  • Lai GY. Proc. Conf. Chemical Waste Incineration, Manchester; March 12–13; 1990.
  • Lai GY, Sorell G, editors. Materials performance in waste incineration system. Houston (TX): NACE; 1991.
  • Grabke HJ, Reese E, Spiegel M. The effects of chlorides, hydrogen chloride, and sulfur dioxide in the oxidation of steels below deposits. Corros Sci. 1995;37(7):1023–1043.
  • Wu CC, Wang SH, Chen CY, et al. Inverse effect of strain rate on mechanical behavior and phase transformation of superaustenitic stainless steel. Scr Mater. 2007;56(8):717–720.
  • Abd El Meguid EA, Abd El Latif AA. Electrochemical and SEM study on type 254 SMO stainless steel in chloride solutions. Corros Sci. 2004;46(10):2431–2444.
  • Wang SH, Wu CC, Chen CY, et al. Cyclic deformation and phase transformation of 6Mo superaustenitic stainless steel. Met Mater Int. 2007;13(4):275–283.
  • Arivazhagan N, Singh S, Prakash S, et al. Hot corrosion studies on dissimilar friction welded low alloy steel and austenitic stainless steel under chlorine containing salt deposits under cyclic conditions. Corros Eng. 2009;44(5):369–380.
  • Mudgal D, Singh S, Prakash S. Corrosion problems in incinerators and biomass-fuel-fired boilers. Int J Corros. 2014;2014:1–14.
  • Nakagawa K, Matsunaga Y. The effect of chemical composition of ash deposit on the corrosion of boiler tubes in waste incinerators. MSF. 1997;251–254:535–542.
  • Mudgal D, Verma PK, Singh S, et al. High temperature degradation of Co based superalloy in incinerator environment. AMR. 2012;585:542–546.
  • Uusitalo MA, Vuoristo PM, Mäntylä TA. High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits. Corros Sci. 2004;46(6):1311–1331.
  • Lutterotti L, Matthies S, Wenk HR, et al. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J Appl Phys. 1997;81(2):594–600.
  • Ramkumar KD, Bhalodi AJ, Ashokbhai HJ, et al. Effect of Mo-rich fillers in pulsed current gas tungsten arc welding of Inconel 718 for improved strength and hot corrosion resistance. J Mater Eng Perform. 2017;26(11):5620–5640.
  • Choi H, Yoon B, Kim H, et al. Isothermal oxidation of air plasma spray NiCrAlY bond coatings. Surf Coat Technol. 2002;150(2–3):297–308.
  • Sidhu TS, Prakash S, Agrawal RD. Characterisations of HVOF sprayed NiCrBSi coatings on Ni-and Fe-based superalloys and evaluation of cyclic oxidation behaviour of some Ni-based superalloys in molten salt environment. Thin Solid Films. 2006;515(1):95–105.
  • Wang CJ, He TT. Morphological development of subscale formation in Fe–Cr–(Ni) alloys with chloride and sulfates coating. Oxid Met. 2002;58(3/4):415–437.
  • Hiramatsu N, Uematsu Y, Tanaka T, et al. Effects of alloying elements on NaCl-induced hot corrosion of stainless steels. Mater Sci Eng A. 1989;120–121:319–328.
  • Kamal S, Sharma KV, Abdul-Rani AM. Hot corrosion behavior of superalloy in different corrosive environments. JMMCE. 2015;3(1):26–36.
  • Singh H, Puri D, Prakash S. An overview of Na2SO4 and/or V2O5 induced hot corrosion of Fe-and Ni-based superalloys. Rev Adv Mater Sci. 2007;16(1–2):27.
  • Ramkumar KD, Abraham WS, Viyash V, et al. Investigations on the microstructure, tensile strength and high temperature corrosion behaviour of Inconel 625 and Inconel 718 dissimilar joints. J Manuf Processes. 2017;25:306–322.
  • Muthu SM, Arivarasu M. Investigations of hot corrosion resistance of HVOF coated Fe based superalloy A-286 in simulated gas turbine environment. Eng Fail Anal. 2020;107:104224.
  • Zhou W, Zhou K, Deng C, et al. Hot corrosion behavior of HVOF-sprayed Cr3C2-WC-NiCoCrMo coating. Ceram Int. 2017;43(12):9390–9400.
  • Kamal S, Jayaganthan R, Prakash S. Evaluation of cyclic hot corrosion behaviour of detonation gun sprayed Cr3C2–25% NiCr coatings on nickel-and iron-based superalloys. Surf Coat Technol. 2009;203(8):1004–1013.
  • Chatha SS, Sidhu HS, Sidhu BS. High temperature hot corrosion behaviour of NiCr and Cr3C2–NiCr coatings on T91 boiler steel in an aggressive environment at 750 C. Surf Coat Technol. 2012;206(19–20):3839–3850.
  • Singh H, Sidhu TS. High temperature corrosion behavior of Ni-based superalloy superni-75 in the real service environment of medical waste incinerator. Oxid Met. 2013;80(5–6):651–668.
  • Kalsi SB, Sidhu TS, Singh H. Chlorine based hot corrosion study of cold sprayed NiCrAlY coating. Surf Eng. 2014;30(6):422–431.
  • Sreedhar G, Raja VS. Hot corrosion of YSZ/Al2O3 dispersed NiCrAlY plasma-sprayed coatings in Na2SO4–10 wt.% NaCl melt. Corros Sci. 2010;52(8):2592–2602.
  • Mannava V, Rao AS, Paulose N, et al. Hot corrosion studies on Ni-base superalloy at 650 °C under marine-like environment conditions using three salt mixture (Na2SO4 + NaCl + NaVO3). Corros Sci. 2016;105:109–119.
  • Hancock P. Vanadic and chloride attack of superalloys. Mater Sci Technol. 1987;3(7):536–544.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.