226
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Numerical simulation of explosive welded titanium and Al7075-T6 bimetal composite plate using ANSYS Autodyn

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 455-473 | Received 15 Mar 2022, Accepted 03 Jul 2022, Published online: 11 Aug 2022

References

  • Mahmood Y, Chen PW, Bataev IA, et al. Experimental and numerical investigations of interface properties of Ti6Al4V/CP-Ti/copper composite plate prepared by explosive welding. Defence Technol. 2021;17(5):1592–1601.
  • Campanella D, Buffa G, Fratini L. A two steps Lagrangian–Eulerian numerical model for the simulation of explosive welding of three dissimilar materials joints. CIRP J Manuf Sci Technol. 2021;35:541–549.
  • Yang M, Xu J, Ma H, et al. Microstructure development during explosive welding of metal foil: morphologies, mechanical behaviors and mechanisms. Compos B Eng. 2021;212:108685.
  • Sun Z, Shi C, Xu F, et al. Detonation process analysis and interface morphology distribution of double vertical explosive welding by SPH 2D/3D numerical simulation and experiment. Mater Des. 2020;191:108630.
  • Elango E, Saravanan S, Raghukandan K. Experimental and numerical studies on aluminum-stainless steel explosive cladding. J Cent South Univ. 2020;27(6):1742–1753.
  • Wang Q, Li X, Shi B, et al. Experimental and numerical studies on preparation of thin AZ31B/AA5052 composite plates using improved explosive welding technique. Metals. 2020;10(8):1023.
  • Yang M, Xu J, Chen D, et al. Understanding interface evolution during explosive welding of silver foil and Q235 substrate through experimental observation coupled with simulation. Appl Surf Sci. 2021;566:150703.
  • Wu X, Shi C, Fang Z, et al. Comparative study on welding energy and interface characteristics of titanium-aluminum explosive composites with and without interlayer. Mater Des. 2021;197:109279.
  • He Y, Zhang S, Ding Q, et al. Comprehensive investigation of microstructural inhomogeneity in the bonding zone of explosive-welded AISI 410S/A283GrD composite. Compos Interfaces. 2022;29(1):57–77.
  • Wilson Dhileep Kumar C, Saravanan S, Raghukandan K. Numerical and experimental investigation on aluminum 6061-V-grooved stainless steel 304 explosive cladding. Def Technol. 2022;18(2):249–260.
  • Tian X, Wang Z, Teng X, et al. Numerical simulation of explosive welding of marine aluminum steel transition joint based on AUTODYN. IOP Conf Ser Mater Sci Eng. 2020;811(1):012013.
  • Mahmood Y, Dai K, Chen P, et al. Experimental and numerical study on microstructure and mechanical properties of Ti-6Al-4V/Al-1060 explosive welding. Metals. 2019;9(11):1189.
  • Li Y, Liu C, Yu H, et al. Numerical simulation of Ti/Al bimetal composite fabricated by explosive welding. Metals. 2017;7(10):407.
  • Emurlaeva YY, Aleksandrova NS, Bataev IA. Weldability window for high-velocity impact welding of Al and Ti plates obtained by numerical simulation. KEM. 2022;910:544–550.
  • Xiang CH, Daisuke IN, Tanaka S, et al. Comparison of explosive welding of pure titanium/SUS 304 austenitic stainless steel and pure titanium/SUS 821L1 duplex stainless steel. Trans Nonferrous Met Soc China. 2021;31(9):2687–2702.
  • Zhang ZL, Liu MB. Numerical studies on explosive welding with ANFO by using a density adaptive SPH method. J Manuf Processes. 2019;41:208–220.
  • Zhang Z, Peng L, Wang J, et al. Study on defects of large-sized Ti/steel composite materials in explosive welding. Procedia Eng. 2011;16:14–27.
  • Chen Z, Xu J, Zhou H, et al. Experimental and numerical investigation on fabricating multiple plates by an energy effective explosive welding technique. J Mater Res Technol. 2021;14:3111–3122.
  • Zeng XY, Li XQ, Li XJ, et al. Numerical study on the effect of thermal conduction on explosive welding interface. Int J Adv Manuf Technol. 2019;104(5–8):2607–2617.
  • Chen X, Inao D, Tanaka S, et al. Explosive welding of Al alloys and high strength duplex stainless steel by controlling energetic conditions. J Manuf Processes. 2020;58:1318–1333.
  • Mousavi AA, Burley SJ, Al-Hassani ST. Simulation of explosive welding using the Williamsburg equation of state to model low detonation velocity explosives. Int J Impact Eng. 2005;31(6):719–734.
  • Kahraman N, Gülenç B. Microstructural and mechanical properties of Cu–Ti plates bonded through explosive welding process. J Mater Process Technol. 2005;169(1):67–71.
  • Matsui Y, Otsuka M, Hinata T, et al. Explosive welding of light weight metal sheets. 8th International LS-DYNA Conference, Detroit, 8–59; 2004.
  • Wang X, Zheng Y, Liu H, et al. Numerical study of the mechanism of explosive/impact welding using smoothed particle hydrodynamics method. Mater Des. 2012;35:210–219.
  • Madej L, Perzynski K, Paul H. Numerical modelling of explosive welding on the basis of the coupled Eulerian Lagrangian approach. KEM. 2015;651–653:1415–1420.
  • Zu G, Li X, Zhang J, et al. Interfacial characterization and mechanical property of Ti/Cu clad sheet produced by explosive welding and annealing. J Wuhan Univ Technol-Mat Sci Edit. 2015;30(6):1198–1203.
  • Malakhov AY, Saikov IV, Denisov IV, et al. AlMg6 to titanium and AlMg6 to stainless steel weld interface properties after explosive welding. Metals. 2020;10(11):1500.
  • Bazarnik P, Adamczyk-Cieślak B, Gałka A, et al. Mechanical and microstructural characteristics of Ti6Al4V/AA2519 and Ti6Al4V/AA1050/AA2519 laminates manufactured by explosive welding. Mater Des. 2016;111:146–157.
  • Liu R, Wang W, Zhang T, et al. Numerical study of Ti/Al/Mg three-layer plates on the interface behavior in explosive welding. Sci Eng Compos Mater. 2017;24(6):833–843.
  • Zeng XY, Wang YX, Li XQ, et al. Effect of inert gas-shielding on the interface and mechanical properties of Mg/Al explosive welding composite plate. J Manuf Processes. 2019;45:166–175.
  • Nassiri A, Zhang S, Lee T, et al. Numerical investigation of CP-Ti & Cu110 impact welding using smoothed particle hydrodynamics and arbitrary Lagrangian-Eulerian methods. J Manuf Processes. 2017;28:558–564.
  • Liang H, Luo N, Shen T, et al. Experimental and numerical simulation study of Zr-based BMG/Al composites manufactured by underwater explosive welding. J Mater Res Technol. 2020;9(2):1539–1548.
  • Sun Z, Shi C, Shi H, et al. Comparative study of energy distribution and interface morphology in parallel and double vertical explosive welding by numerical simulations and experiments. Mater Des. 2020;195:109027.
  • Feng J, Chen P, Zhou Q, et al. Numerical simulation of explosive welding using smoothed particle hydrodynamics method. Int J Multiphys. 2017;11(3):315–326.
  • Bataev IA, Tanaka S, Zhou Q, et al. Towards better understanding of explosive welding by combination of numerical simulation and experimental study. Mater Des. 2019;169:107649.
  • Chu Q, Zhang M, Li J, et al. Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding. Mater Sci Eng A. 2017;689:323–331.
  • Wu X, Shi C, Feng K, et al. Experimental and numerical approach to titanium-aluminum explosive welding. Mater Res Express. 2021;8(9):096503.
  • Mousavi SA, Sartangi PF. Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel. Mater Des. 2009;30(3):459–468.
  • Wang Y, Beom HG, Sun M, et al. Numerical simulation of explosive welding using the material point method. Int J Impact Eng. 2011;38(1):51–60.
  • Findik F. Recent developments in explosive welding. Mater Des. 2011;32(3):1081–1093.
  • Habib MA, Keno H, Uchida R, et al. Cladding of titanium and magnesium alloy plates using energy-controlled underwater three layer explosive welding. J Mater Process Technol. 2015;217:310–316.
  • Zeng XY, Wang YX, Li XQ, et al. Effects of gaseous media on interfacial microstructure and mechanical properties of titanium/steel explosive welded composite plate. Fusion Eng Des. 2019;148:111292.
  • Davis LL, Hill LG. ANFO cylinder tests. AIP Conf Proc. 2002;620(1):165–168.
  • Steinberg D. Equation of state and strength properties of selected materials. Livermore: Lawrence Livermore National Laboratory; 1996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.