139
Views
0
CrossRef citations to date
0
Altmetric
Review

A systematic overview on activated-Tungsten inert gas welding

, &
Pages 597-615 | Received 13 Jun 2022, Accepted 13 Oct 2022, Published online: 09 Nov 2022

References

  • Bodkhe SC, Dolas DR. Optimization of activated tungsten inert gas welding of 304L austenitic stainless steel. Procedia Manuf. 2018;20:277–282.
  • Patel D, Jani S. Techniques to weld similar and dissimilar materials by ATIG welding-an overview. Mater Manuf Processes. 2021;36(1):1–16.
  • Singh SR, Khanna P. A-TIG (activated flux tungsten inert gas) welding:–a review. Mater Today. 2021;44:808–820.
  • Garg H, Sehgal K, Lamba R, et al. A systematic review: effect of TIG and A-TIG welding on austenitic stainless steel. Adv Ind Prod Eng. 2019;2019:375–385.
  • Venkatesan G, George J, Sowmyasri M, et al. Effect of ternary fluxes on depth of penetration in A-TIG welding of AISI 409 ferritic stainless steel. Procedia Mater Sci. 2014;5:2402–2410.
  • Prasad SK, Mathiazhagan A, Krishnadas PS. Effect of manual and automatic activated tungsten inert gas welding using single component fluxes on stainless steel AISI-304. J Ship Prod Design. 2020;2009(1):36.
  • Sharma P, Dwivedi DK. A-TIG welding of dissimilar P92 steel and 304H austenitic stainless steel: mechanisms, microstructure and mechanical properties. J Manuf Processes. 2019;44:166–178.
  • Kumar SM, Shanmugam NS. Studies on the weldability, mechanical properties and microstructural characterization of activated flux TIG welding of AISI 321 austenitic stainless steel. Mater Res Express. 2018;5(10):106524.
  • Leconte S, Paillard P, Chapelle P, et al. Effects of flux containing fluorides on TIG welding process. Sci Technol Weld Joining. 2007;12(2):120–126.
  • Hdhibi A, Touileb K, Djoudjou R, et al. Effect of single oxide fluxes on morphology and mechanical properties of ATIG on 316 L austenitic stainless steel welds. Eng Technol Appl Sci Res. 2018;8(3):3064–3072.
  • Fan D, Zhang R, Gu Y, et al. Effect of flux on A-TIG welding of mild steels (physics, processes, instruments & measurements). Trans JWRI. 2001;30(1):35–40.
  • Vidyarthy RS, Dwivedi DK, Vasudevan M. Influence of M-TIG and A-TIG welding process on microstructure and mechanical behavior of 409 ferritic stainless steel. J Mat Eng Perform. 2017;26(3):1391–1403.
  • Sridhar SP, Kumar SA, Sathiya P. A study on the effect of different activating flux on A-TIG welding process of incoloy 800H. Adv Mat Sci. 2016;16(3):26–37.
  • Wang L, Shen J, Xu N. Effects of TiO2 coating on the microstructures and mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joints. Mat Sci Eng. 2011;528(24):7276–7284.
  • Jayakrishnan S, Chakravarthy P, Rijas AM. Effect of flux gap and particle size on the depth of penetration in FBTIG welding of aluminium. Trans Indian Inst Met. 2017;70(5):1329–1335.
  • Nayee SG, Badheka VJ. Effect of oxide-based fluxes on mechanical and metallurgical properties of dissimilar activating flux assisted-Tungsten inert gas welds. J Manuf Processes. 2014;16(1):137–143.
  • Venkatesan G, Muthupandi V, Justine J. Activated TIG welding of AISI 304L using Mono-and tri-component fluxes. Int J Adv Manuf Technol. 2017;93(1–4):329–336.
  • Babbar A, Kumar A, Jain V, et al. Enhancement of activated tungsten inert gas (A-TIG) welding using multi-component TiO2-SiO2-Al2O3 hybrid flux. Measurement. 2019;148:106912.
  • Kulkarni A, Dwivedi DK, Vasudevan M. Effect of oxide fluxes on activated TIG welding of AISI 316L austenitic stainless steel. Mater Today. 2019;18:4695–4702.
  • Roy S, Samaddar S, Uddin M, et al. Effect of activating flux on penetration in ATIG welding of 316 stainless steel. Indian Welding J. 2017;50(4):72.
  • Huang Y, Fan D, Fan Q. Study of mechanism of activating flux increasing weld penetration of AC A-TIG welding for aluminum alloy. Front Mech Eng China. 2007;2(4):442–447.
  • Kulkarni A, Dwivedi DK, Vasudevan M. Microstructure and mechanical properties of A-TIG welded AISI 316L SS-Alloy 800 dissimilar metal joint. Mat Sci Eng. 2020;790:139685.
  • Dhandha KH, Badheka VJ. Effect of activating fluxes on weld bead morphology of P91 steel bead-on-plate welds by flux assisted tungsten inert gas welding process. J Manuf Proc. 2015;17:48–57.
  • Lu S, Fujii H, Tanaka M, et al. Oxide flux quantity and size effects on the penetration depth in A-TIG welding (materials, metallurgy & weldability. Trans JWRI. 2002;31(2):187–192. )
  • Tseng KH, Hsu CY. Performance of activated TIG process in austenitic stainless steel welds. J Mater Process Technol. 2011;211(3):503–512.
  • Xu YL, Dong ZB, Wei YH, et al. Marangoni convection and weld shape variation in A-TIG welding process. Theor Appl Fract Mech. 2007;48(2):178–186.
  • Vidyarthy RS, Dwivedi DK. Weldability evaluation of 409 FSS with A-TIG welding process. Mater Today. 2019;18:3052–3060.
  • Vasudevan M. Effect of A-TIG welding process on the weld attributes of type 304LN and 316LN stainless steels. J Materi Eng Perform. 2017;26(3):1325–1336.
  • Ahmadi E, Ebrahimi AR. Welding of 316L austenitic stainless steel with activated tungsten inert gas process. J Materi Eng Perform. 2015;24(2):1065–1071.
  • Vidyarthy RS, Dwivedi DK. Activating flux tungsten inert gas welding for enhanced weld penetration. J Manuf Processes. 2016;22:211–228.
  • Vasantharaja P, Vasudevan M. Studies on A-TIG welding of low activation ferritic/martensitic (LAFM) steel. J Nucl Mater. 2012;421(1-3):117–123.
  • Sujai S, Ramkumar KD. Microstructure and properties of nano-SiO2 activated flux TIG (A-TIG) welding of incoloy 925 joints. J Manuf Proc. 2020;58:998–1018.
  • Shyu SW, Huang HY, Tseng KH, et al. Study of the performance of stainless steel A-TIG welds. J Materi Eng Perform. 2008;17(2):193–201.
  • Tathgir S, Rathod DW, Batish A. A-TIG welding process for enhanced-penetration in Duplex stainless-steel: effect of activated fluxes. Mater Manuf Proc. 2019;34(15):1659–1670.
  • Tathgir S, Bhattacharya A. Activated-TIG welding of different steels: influence of various flux and shielding gas. Mater Manuf Proc. 2016;31(3):335–342.
  • Kumar K, Deheri SC, Masanta M. Effect of activated flux on TIG welding of 304 austenitic stainless steel. Mater Today. 2019;18:4792–4798.
  • Sándor T. ATIG welding of duplex steel. Mat Sci Forum. 2008;589:49–54.
  • Sivakumar J, Naik KN. Optimization of weldment in bead on plate welding of nickel based superalloy using activated flux tungsten inert gas welding (A-TIG). Mater Today. 2020;27:2718–2723.
  • Mohan Kumar S, Sankarapandian S, Siva Shanmugam N. Investigations on mechanical properties and microstructural examination of activated TIG-welded nuclear grade stainless steel. J Braz Soc. Mech. Sci. Eng. 2020;42(6):1–21.
  • Sivakumar J, Vasudevan M, Korra NN. Systematic welding process parameter optimization in activated tungsten inert gas (A-TIG) welding of inconel 625. Trans Indian Inst Met. 2020;73(3):555–569.
  • Loureiro AR, Costa BFO, Batista AC, et al. Effect of activating flux and shielding gas on microstructure of TIG welds in austenitic stainless steel. Sci Technol Weld Join. 2009;14(4):315–320.
  • Jurica M, Kožuh Z, Garašić I, et al. Optimization of the A-TIG welding for stainless steels. In: Conference Series: Materials Science and Engineering (vol. 329, no. 1), March. IOP Publishing; 2018., p. 012012.
  • Tathgir S, Rathod DW, Batish A. Process enhancement using hydrogen-induced shielding: h 2-induced A-TIG welding process. Mater Manuf Proc. 2020;35(10):1084–1095.
  • Howse DS, Lucas W. Investigation into arc constriction by active fluxes for tungsten inert gas welding. Sci Technol Weld Join. 2000;5(3):189–193.
  • Maduraimuthu V, Vasudevan M, Muthupandi V, et al. Effect of activated flux on the microstructure, mechanical properties, and residual stresses of modified 9Cr-1Mo steel weld joints. Metall and Materi Trans B. 2012;43(1):123–132.
  • Rana H, Badheka V, Patel P, et al. Augmentation of weld penetration by flux assisted TIG welding and its distinct variants for oxygen free copper. J Mater Res Technol. 2021;10:138–151.
  • Badheka VJ, Basu R, Omale J, et al. Microstructural aspects of TIG and A-TIG welding process of dissimilar steel grades and correlation to mechanical behavior. Trans Indian Inst Met. 2016;69(9):1765–1773.
  • Manikandan M, Raj AD, Kumar MS, et al. Investigation on microstructure, micro segregation and mechanical properties of ATIG welded alloy C-276. Mater Today. 2018;5(2):6702–6710.
  • Arivazhagan B, Vasudevan M. Studies on A-TIG welding of 2.25 Cr-1Mo (P22) steel. J Manuf Proc. 2015;18:55–59.
  • Arivazhagan B, Vasudevan M. A comparative study on the effect of GTAW processes on the microstructure and mechanical properties of P91 steel weld joints. J Manuf Proc. 2014;16(2):305–311.
  • Kumar SA, Sathiya P. Experimental investigation of the A-TIG welding process of incoloy 800H. Mater Manuf Proc. 2015;30(9):1154–1159.
  • Pandey C, Mahapatra MM, Kumar P, et al. Dissimilar joining of CSEF steels using autogenous tungsten-inert gas welding and gas tungsten arc welding and their effect on δ-ferrite evolution and mechanical properties. J Manufact Proc. 2018;31:247–259.
  • Vidyarthy RS, Kulkarni A, Dwivedi DK. Study of microstructure and mechanical property relationships of A-TIG welded P91–316L dissimilar steel joint. Mat Sci Eng. 2017;695:249–257.
  • Ramkumar KD, Bajpai A, Raghuvanshi S, et al. Investigations on structure–property relationships of activated flux TIG weldments of super-duplex/austenitic stainless steels. Mat Sci Eng. 2015;638:60–68.
  • Vidyarthy RS, Dwivedi DK. A comparative study on creep behavior of AISI 409 ferritic stainless steel in as-received and as-welded condition (A-TIG and M-TIG). Mater Today. 2018;5(9):17097–17106.
  • Ramkumar KD, Dev S, Saxena V, et al. Effect of flux addition on the microstructure and tensile strength of dissimilar weldments involving Inconel 718 and AISI 416. Mat Design. 2015;87:663–674.
  • Ganesh KC, Balasubramanian KR, Vasudevan M, et al. Effect of multipass TIG and activated TIG welding process on the thermo-mechanical behavior of 316LN stainless steel weld joints. Metal Mat Trans B. 2016;47(2):1347–1362.
  • Vora JJ, Badheka VJ. Experimental investigation on microstructure and mechanical properties of activated TIG welded reduced activation ferritic/martensitic steel joints. J Manuf Proc. 2017;25:85–93.
  • Surve A, Bhosage S, Mehta A, et al. 2018. Investigation on microstructure and mechanical properties of ATIG welded alloy C-276 with Fe2O3 flux In IOP Conference Series: Materials Science and Engineering (Vol. 310, no. 1, p. 012080). IOP Publishing.
  • Sharma P, Dwivedi DK. Comparative study of activated flux-GTAW and multipass-GTAW dissimilar P92 steel-304H ASS joints. Mater Manuf Proc. 2019;34(11):1195–1204.
  • Sharma P, Dwivedi DK. Improving the strength-ductility synergy and impact toughness of dissimilar martensitic-austenitic steel joints by A-TIG welding with wire feed. Mater Lett. 2021;285:129063.
  • Touileb K, Ouis A, Djoudjou R, et al. Effects of ATIG welding on weld shape, mechanical properties, and corrosion resistance of 430 ferritic stainless steel alloy. Metals. 2020;10(3):404.
  • Vasantharaja P, Vasudevan M, Palanichamy P. Effect of welding processes on the residual stress and distortion in type 316LN stainless steel weld joints. J Manuf Proc. 2015;19:187–193.
  • Kuo CH, Tseng KH, Chou CP. Effect of activated TIG flux on performance of dissimilar welds between mild steel and stainless steel. In: Key engineering materials (Vol. 479). Wollerau: Trans Tech Publications Ltd.; 2011. pp 74–80.
  • Venkata KA, Truman CE, Wimpory RC, et al. Numerical simulation of a three-pass TIG welding using finite element method with validation from measurements. Int J Press Vessels Pip. 2018;164:68–79.
  • Alcantara AS, Fábián ER, Furkó M, et al. Corrosion resistance of TIG welded joints of stainless steels. Mat Sci Forum. 2017;885:190–195.
  • Sanford BR, Venkatesh KM, Arivarasu M, et al. Studies on hot corrosion behaviour of A-TIG welded AISI 316 weldments. Mater Today. 2018;5(5):13334–13339.
  • Sándor T, Dobránszky J. The experiences of activated tungsten inert gas (ATIG) welding applied on 1.4301 type stainless steel plates. In: Materials science forum (Vol. 537). Wollerau: Trans Tech Publications Ltd.; 2007. pp. 63–70.
  • Alwin B, Lakshminarayanan AK, Vasudevan M, et al. Assessment of stress corrosion cracking resistance of activated tungsten inert gas-welded duplex stainless steel joints. J Mat Eng Perform. 2017;26(12):5825–5836.
  • Neethu N, Togita RG, Neelima P, et al. Effect of nature of flux and flux gap on the depth-to-width ratio in flux-bounded TIG welding of AA6061: experiments and numerical simulations. Trans Indian Inst Met. 2019;72(6):1585–1588.
  • Zhang RH, Fan D. Numerical simulation of effects of activating flux on flow patterns and weld penetration in ATIG welding. Sci Technol Weld Join. 2007;12(1):15–23.
  • Unni AK, Vasudevan M. Numerical modelling of fluid flow and weld penetration in activated TIG welding. Mater Today. 2020;27:2768–2773.
  • Unni AK, Muthukumaran V. Numerical simulation of the influence of oxygen content on the weld Pool depth during activated TIG welding. Int J Adv Manuf Technol. 2021;112(1–2):467–489.
  • Fujii H, Sato T, Lu S, et al. Development of an advanced A-TIG (AA-TIG) welding method by control of Marangoni convection. Mat Sci Eng. 2008;495(1–2):296–303.
  • Zou Y, Ueji R, Fujii H. Effect of oxygen on weld shape and crystallographic orientation of duplex stainless steel weld using advanced A-TIG (AA-TIG) welding method. Mater Char. 2014;91:42–49.
  • Kulkarni A, Dwivedi DK, Vasudevan M. Dissimilar metal welding of P91 steel-AISI 316L SS with Incoloy 800 and Inconel 600 interlayers by using activated TIG welding process and its effect on the microstructure and mechanical properties. J Mater Process Technol. 2019;274:116280.
  • Muzamil M, Wu J, Akhtar M, et al. Multicomponent enabled MWCNTs-TiO2 nano-activating flux for controlling the geometrical behavior of modified TIG welding joint process. Diamond Relat Mater. 2019;97:107442.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.