158
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Joints properties in rotary friction welding of AA5083-H112 aluminium alloy

ORCID Icon, , &
Pages 625-634 | Received 07 Sep 2022, Accepted 29 Oct 2022, Published online: 28 Nov 2022

References

  • She X, Jiang X, Zhang R, et al. Study on microstructure and fracture characteristics of 5083 aluminum alloy thick plate. J Alloys Compd. 2020;825:1–8.
  • Lee S, Yeh J. Superplasticity of 5083 alloys with Zr and Mn additions produced by reciprocating extrusion. Mater Sci Eng A. 2007;460–461:409–419.
  • Wu Y, Liao H, Lü C. Dynamic precipitation and recrystallization in Al-12. 5 wt % Si-0. 6 wt % Mg-0. 1 wt % Ti alloy during hot-rolling and their impacts on mechanical properties. J Alloys Compd. 2019;788:125–135.
  • Gang T, Takahashi Y, Wu L. Intelligent pattern recognition and diagnosis of ultrasonic inspection of welding defects based on neural network and information fusion. Sci Technol Weld Join. 2002;7(5):314–320.
  • Mandache C, Levesque D, Dubourg L, et al. Non-destructive detection of lack of penetration defects in friction stir welds. Sci Technol Weld Join. 2012;17(4):295–303.
  • Miki C. Discontinuities, imperfections and defects in welded joints and their effects on joint performance. Weld Int. 1993;7(1):5–8.
  • Mira-Aguiar T, Galvão I, Leitão C, et al. Analysis of weld defects in similar and dissimilar resistance seam welding of aluminium, zinc and galvanised steel. Sci Technol Weld Join. 2015;20(5):409–417.
  • Mathers G. The welding of aluminium and its alloys. Cambridge: Woodhead Publishing Ltd and CRC Press; 2002.
  • Cueca F, Patarroyo A, Rojas F, et al. Study of the weld ability of aluminum alloy 5083 H116 with pulsed arc GMAW (GMAW-P). Cienc Tecnol Buques. 2012;6(11):43–56.
  • Tamasgavabari R, Ebrahimi AR, Abbasi M, et al. The effect of harmonic vibration with a frequency below the resonant range on the mechanical properties of AA-5083-H321 aluminum alloy GMAW welded parts. Mater Sci Eng A. 2018;736:1–17. Published Online.
  • Wu L, Yang B, Han X, et al. The microstructure and mechanical properties of 5083, 6005A and 7N01 aluminum alloy gas metal arc-welded joints for high-speed train: a comparative study. Metals. 2022;12(2):213–215.
  • Liu Y, Wang W, Xie J, et al. Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding. Mater Sci Eng A. 2012;549:7–13.
  • Kimura M, Sakaguchi H, Kusaka M, et al. Characteristics of friction welding between solid bar of 6061 Al alloy and pipe of Al-Si12CuNi Al cast alloy. J Mater Eng Perform. 2015;24(11):4551–4560.
  • Cai W, Daehn G, Vivek A, et al. A state of the art review on solid-state metal joining. J Manuf Sci Eng. 2018;141(6):1–39.
  • Jin F, Li J, Liu P, et al. Friction coefficient model and joint formation in rotary friction welding. J Manuf Process. 2019;46(4):286–297.
  • Li P, Dong H, Xia Y, et al. Inhomogeneous interface structure and mechanical properties of rotary friction welded TC4 titanium alloy/316L stainless steel joints. J Manuf Process. 2018;33(1):54–63.
  • Kessler M, Hartl R, Fuchs A, et al. Simulation of rotary friction welding using a viscoelastic Maxwell model. Sci Technol Weld Join. 2021;26(1):68–74.
  • Etesami SA, Enayati MH, Karimzadeh F, et al. Investigating the properties of friction welded 2014 aluminum joints prepared with different rotational speeds. Trans Indian Inst Met. 2015;68(3):479–489.
  • Ashfaq M, Rao KJ. Comparing bond formation mechanism between similar and dissimilar aluminium alloy friction welds. Mater Sci Technol. 2014;30(3):329–338.
  • Sawai T, Ogawa K, Yamaguchi H, et al. Effects of upset timing on heat input and joint strength in friction welding of a 6061 aluminum alloy. J Jpn Inst Light Metals. 2003;53(2):43–49.
  • Sawai T, Ochi H, Yamamoto Y, et al. Evaluation of joint strength of 6061 aluminum alloy joint welded under inertia type friction welding by heat input and burn-off length. Int Offshore Polar Eng Conf. 2001;IV:277–281.
  • Meengam C, Chainarong S, Muangjunburee P. Friction welding of semi-solid metal 7075 aluminum alloy. Mater Today Proc. 2017;4(2):1303–1311.
  • Li X, Li J, Jin F, et al. Effect of rotation speed on friction behavior of rotary friction welding of AA6061-T6 aluminum alloy. Weld World. 2018;62(5):923–930.
  • Uday MB, Ahmad Fauzi MN, Zuhailawati H, et al. Advances in friction welding process: a review. Sci Technol Weld Join. 2010;15(7):534–558.
  • Seli H, Ismail AIM, Rachman E, et al. Mechanical evaluation and thermal modelling of friction welding of mild steel and aluminium. J Mater Process Technol. 2010;210(9):1209–1216.
  • Sasmito A, Ilman MN, Iswanto PT, et al. Effect of rotational speed on static and fatigue properties of rotary friction welded dissimilar AA7075/AA5083 aluminium alloy joints. Metals. 2022;12(1):99–17.
  • ASM Committee. ASTM E 407-07: Standard practice for microetching metals and alloys. ASTM Standards. ASTM International; 2015. 1–21.
  • ASTM Committee. Standard test methods for tension testing of metallic materials. ASTM E8-16. ASTM International; 2016.
  • ASTM Committee. ASTM E466-15: Standard practice for conducting force controlled constant amplitude axial fatigue tests of metallic materials. ASTM Standards. Vol. E466-15. ASTM International; 2015. p. 1–6.
  • Schijve J. Fatigue of structure and materials. Berlin: Springer Science+Business Media, B.V.; 2008.
  • Abuzaid W, Hawileh R, Abdalla J. Mechanical properties of strengthening 5083-H111 aluminum alloy plates at elevated temperatures. Infrastructures. 2021;6(6):87–17.
  • Summers PT, Tech V, Case SW, et al. Post-fire mechanical properties and hardness of 5083 and 6082 aluminium alloys. Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition. ASME; 2012. p. 1–9. http://proceedings.asmedigitalcollection.asme.org
  • Summers PT, Case SW, Lattimer BY. Residual mechanical properties of aluminum alloys AA5083-H116 and AA6061-T651 after fire. Eng Struct. 2014;76:49–61.
  • Summers PT, Chen Y, Rippe CM, et al. Overview of aluminum alloy mechanical properties during and after fires. Fire Sci Rev. 2015;4(1):1–36.
  • Summers PT, Mouritz AP, Case SW, et al. Microstructure-based modeling of residual yield strength and strain hardening after fire exposure of aluminum alloy 5083-H116. Mater Sci Eng A. 2015;632:14–28.
  • Guo X, Tao L, Zhu S, et al. Experimental investigation of mechanical properties of aluminum alloy at high and low temperatures. Mater Civ Eng. 2020;32(2):1–11.
  • Chen S, Wu C, Ou Y, et al. Hot deformation resistance of an AA5083 alloy under high strain rate. KEM. 2014;626:553–560.
  • Chen R-Y, Chu H-Y, Lai C-C, et al. Effects of annealing temperature on the mechanical properties and sensitization of 5083-H116 aluminum alloy. Mater Des Appl Des Appl. 2015;229(4):339–346. In
  • AWS Committee. AWS welding handbook. Miami: Macmillan Press Ltd.; 1980.
  • Hasçalik A, Ünal E, Özdemir N. Fatigue behaviour of AISI 304 steel to AISI 4340 steel welded by friction welding. J Mater Sci. 2006;41(11):3233–3239.
  • Malopheyev S, Kaibyshev R. Strengthening mechanisms in a Zr-modified 5083 alloy deformed to high strains. Mater Sci Eng A. 2015;620(12):246–252.
  • Shen J, Chen X, Hammond V, et al. The effect of rolling on the microstructure and compression behavior of AA5083 subjected to large-scale ECAE. J Alloys Compd. Published online 2017;695:3589–3597.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.