904
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Influence of thermomechanical treatments on the microstructure and mechanical properties of AISI 304L welds

, , , &
Pages 79-90 | Received 06 Dec 2022, Accepted 15 Feb 2023, Published online: 02 Mar 2023

References

  • Lo KH, Shek CH, Lai JKL. Recent developments in stainless steels. Mater Sci Eng R-Rep. 2009;65(4–6):39–104.
  • Szałowski B. Effect of thermomechanical welding on the austenitic stainless steel [master’s thesis]. Austria: Graz University of Technology; 2022.
  • Sutton BJ. Development of a primary solidification mode diagram for austenitic stainless steel weld metals using CALPHAD-based modeling [dissertation]. America: The Ohio State University; 2021.
  • Li LC, Chai MY, Li YQ, et al. Effect of welding heat input on grain size and microstructure of 316L stainless steel welded joint. AMM. 2013;331:578–582.
  • Suutala N, Takalo T, Moisio T. Ferritic-austenitic solidification mode in austenitic stainless steel welds. MTA. 1980;11(5):717–725.
  • Inoue H, Koseki T. Solidification mechanism of austenitic stainless steels solidified with primary ferrite. Acta Mater. 2017;124:430–436.
  • Inoue H, Koseki T. Clarification of solidification behaviors in austenitic stainless steels based on welding process. Nippon Steel Tech Rep. 2007;95:62–70.
  • Osamu K, Kazuo K, Yasushi K. Effects of δ-ferrite morphology on low temperature fracture toughness of austenitic stainless steel weld metal. Weld Int. 1992;6(8):606–611.
  • Inoue H, Koseki T, Ohkita S, et al. Formation mechanism of vermicular and lacy ferrite in austenitic stainless steel weld metals. Sci Technol Weld Join. 2000;5(6):385–396.
  • Naghizadeh M, Mirzadeh H. Effects of grain size on mechanical properties and Work-Hardening behavior of AISI 304 austenitic stainless steel. Steel Res Int. 2019;90(10):1900153.
  • Morris JW. Jr., The influence of grain size on the mechanical properties of steel. OSTI.GOV Technical Rep.; 2001.
  • Wang P, Zhao J, Ma L, et al. Effect of grain ultra-refinement on microstructure, tensile property, and corrosion behavior of low alloy steel. Mater Charact. 2021;179:111385.
  • Poddar D, Chakraborty A, B RK. Annealing twin evolution in the grain-growth stagnant austenitic stainless steel microstructure. Mater Charact. 2019;155:109791.
  • Sadeghi F, Zargar T, Kim JW, et al. Role of the annealing twin boundary on the athermal α′-martensite formation in a 304 austenitic stainless steel. Materialia. 2021;20:101218.
  • Jin Y, Bernacki M, Rohrer GS, et al. Formation of annealing twins during recrystallization and grain growth in 304L austenitic stainless steel. MSF. 2013;753:113–116.
  • Wen T, Liu SY, Chen S, et al. Influence of high frequency vibration on microstructure and mechanical properties of TIG welding joints of AZ31 magnesium alloy. Trans Nonferrous Met Soc China. 2015;25(2):397–404.
  • Sabzi M, Dezfuli SM. Drastic improvement in mechanical properties and weldability of 316L stainless steel weld joints by using electromagnetic vibration during GTAW process. J Manuf Process. 2018;33:74–85.
  • Ma C, Li CL, Yan YH, et al. Investigation of in situ vibration during wire and arc additive manufacturing. 3D Print Addit Manuf. 2021. DOI:10.1089/3dp.2021.0053
  • Al-Qawabah SMO, Zaid AI. Different methods for grain refinement of materials. Int J Sci Res. 2016;7(7):1133–1140.
  • Dehghan-Manshadi A, Barnett MR, Hodgson PD. Hot deformation and recrystallization of austenitic stainless steel: part I. Metall Mat Trans A. 2008;39(6):1359–1370.
  • Dehghan-Manshadi A, Barnett MR, Hodgson PD. Hot deformation and recrystallization of austenitic stainless steel: part II. Metall Mat Trans A. 2008;39(6):1371–1381.
  • Dehghan-Manshadi A, Barnett MR, Hodgson PD. Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation. Mater Sci Eng A. 2008;485(1–2):664–672.
  • Sarkar Jkc A. Investigation of progress in dynamic recrystallization in two austenitic stainless steels exhibiting flow softening. Int J Met Eng. 2013;2(2):130–136.
  • Jozaghi T, Samimi P, Chumlyakov Y, et al. Role of thermally-stable deformation twins on the high-temperature mechanical response of an austenitic stainless steel. Mater Sci Eng A. 2022;845:143199.
  • Wang CH, Sun CY, Cai W, et al. Evolution of partial dislocation slip-mediated deformation twins in single crystals: a discrete dislocation plasticity model and an analytical approach. Int J Plast. 2022;152:103230.
  • De AK, Speer JG, Matlock DK, et al. Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel. Metall Mat Trans A. 2006;37(6):1875–1886.
  • Naghizadeh M, Mirzadeh H. Microstructural evolutions during annealing of plastically deformed AISI 304 austenitic stainless steel: martensite reversion, grain refinement, recrystallization, and grain growth. Metall Mat Trans A. 2016;47(8):4210–4216.
  • Padilha AF, Lesley RL, Rios PR. Annealing of cold-worked austenitic stainless steels. Isij Int. 2003;43(2):135–143.
  • Kheiri S, Mirzadeh H, Naghizadeh M. Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing. Mater Sci Eng A. 2019;759:90–96.
  • Paggi A, Angella G, Donnini R. Strain induced grain boundary migration effects on grain growth of an austenitic stainless steel during static and metadynamic recrystallization. Mater Charact. 2015;107:174–181.
  • Siddiqui MF. Recrystallization and grain growth behavior of austenitic stainless steel 304L [master’s thesis]. Austria: Graz University of Technology; 2021.
  • Naghizadeh M, Mirzadeh H. Recrystallization and grain growth upon annealing of cold worked austenitic stainless steels [book: recrystallization: types, techniques and applications]. New York: Nova Science Publishers, Inc.; 2020. p. 97–116.
  • Shirdel M, Mirzadeh H, Parsa H. M. Microstructural evolution during normal/abnormal grain growth in austenitic stainless steel. Metall Mat Trans A. 2014;45(11):5185–5193.
  • Padilha AF, Dutra JC, Randle V. Interaction between precipitation, normal grain growth, and secondary recrystallisation in austenitic stainless steel containing particles. Mater Sci Technol. 1999;15(9):1009–1014.
  • Randle V, Brown A. Development of grain misorientation texture, in terms of coincident site lattice structures, as a function of thermomechanical treatments. Philos Mag A. 1989;59(5):1075–1089.
  • McGuire FM. Stainless steels for design engineers. USA: ASM International, Materials Park; 2008.
  • Hedström P. Deformation induced martensitic transformation of metastable stainless steel AISI 301 [dissertation]. Sweden: Luleå University of Technology. 2005.
  • Sohrabi MJ, Naghizadeh M, Mirzadeh H. Deformation-induced martensite in austenitic stainless steels: a review. Arch Civ Mech Eng. 2020;20:124.
  • De AK, Murdock DC, Mataya MC, et al. Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction. Scr Mater. 2004;50(12):1445–1449.
  • Azkue JE. In-situ analysis of thermomechanical welding process [bachelor’s thesis]: Spain: Mondragon University Faculty of Engineering. 2022.
  • Mayer T. Einfluss des thermomechanischen Schweißens auf einen austenitischen Zusatzwerkstoff [dissertation]. Austria: Graz University of Technology. 2017.
  • Welding VB. Welding calculator, Available from: https://www.voestalpine.com/welding/Services/weldNet-Software-Solutions/Welding-alculator2.
  • Baghdadchi A, Hosseini VA, Karlsson L. Identification and quantification of martensite in ferritic-austenitic stainless steels and welds. J Mater Res Technol. 2021;15:3610–3621.
  • NUSATEK. Ferrite Content Measurement (Ferritescope Test). Available from: http://www.nusatek.com/on-site-material-inspection/ferrite-content-measurement-ferritescope-test.html.
  • Suutala N. Effect of manganese and nitrogen on the solidification mode in austenitic stainless steel welds. MTA. 1982;13(12):2121–2130.
  • Odnobokova M, Belyakov A, Enikeev N, et al. Annealing behavior of a 304L stainless steel processed by large strain cold and warm rolling. Mater Sci Eng A. 2017;689:370–383.
  • Tikhonova M, Belyakov A, Kaibyshev R. Static grain growth in an austenitic stainless steel subjected to intense plastic straining. Adv Mat Res. 2014;783:1021–1026.
  • Alves J, Brandao LP, Paula A. Mechanically induced martensitic transformation of hot rolled and annealed 304L austenitic stainless steel at room and cryogenic temperatures. Mat Res. 2019;22(suppl. 1):e20190150.