68
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Statistical modelling and optimization of clad characteristics in SAW welding of SS-304

&
Pages 237-253 | Received 25 Oct 2022, Accepted 25 Mar 2023, Published online: 23 May 2023

References

  • Sharma H, Rajput B, Singh RP. A review paper on effect of input welding process parameters on structure and properties of weld in submerged arc welding process. Mater Today Proc. 2020;26:1931–1935.
  • Sridhar PVSS, Biswas P, Mahanta P. Influence of welding current on bead profile and mechanical properties of double sided submerged arc welding of AISI 304 austenitic stainless steel. Mater Today Proc. 2019;19:831–836.
  • Vedrtnam A, Singh G, Kumar A, et al. Optimizing submerged arc welding using response surface methodology, regression analysis, and genetic algorithm. Defence Technol. 2018;14(3):204–212.
  • Singh G, Sharma SK. Optimization of welding parameters of submerged arc welding process. Int J Adv Res Sci Eng. 2016;5(5):459–464.
  • Singh G, Kumar P. Effect of input parameters on bead geometry in submerged arc welding of Ss-316l. Int J Latest Trends Eng Technol. 2017;323–329.
  • Arul Marcel Moshi A, Sundara Bharathi SR, Rajeshkumar R, et al. Factors influencing submerged arc welding on stainless steel – a review. ARPN J Eng Appl Sci. 2016;11:1237–1241.
  • Annoni R, Souza PS, Petrániková M, et al. Submerged-arc welding slags: characterization and leaching strategies for the removal of aluminum and titanium. J Hazard Mater. 2013;244–245:335–341.
  • Gautam U, Abbas M. Analysis of weld bead geometry in saw and modeling using CCD. Int J Mech Eng Robot Res. 2013;2(3):168–181.
  • Jaiswal D. Analysing the effect of parameters in multipass submerged arc welding process. Int J Theor Appl Res Mech Eng. 2013;2(2):2319–3182.
  • Krishankant SJ, Shekhar SK. Determination of flux consumption in submerged arc welding by the effect of welding parameters by using R.S.M techniques. Glob J Res Eng Mech Mech Eng. 2012;12(2):60–70.
  • Khuri AI, Cornell JA. Response surfaces; design and analysis. New York: Marcel Dekker; 1996.
  • Yang LJ, Chandel RS, Bibby MJ. The effects of process variables on the bead width of submerged-arc weld deposits. J Mater Process Technol. 1992;29(1–3):133–144.
  • Borle SD, Gall LE, Mendez PF. Primary chromium carbide fraction control with variable polarity. Weld J. 2015;94:1S–7S.
  • Datta S, Bandyopadhyay A, Pal PK. Grey based Taguchi method for optimization of bead geometry in submerged arc bead-on-plate welding. Int J Adv Manuf Technol. 2008;39(11–12):1136–1143.
  • Pandey ND, Bharti A, Gupta SR. Effect of submerged arc welding parameter sand fluxes on element transfer behavior and weld metal chemistry. J Mater Process Technol. 1994;40(1–2):195–211.
  • Dallam CB, Liu S, Olson DL. Flux consumption dependence of microstructure and toughness of submerged arc HSLA weldments. Weld J. 1985;64(5):140–151.
  • Gaitonde VN, Karnik SR, Achyutha BT, et al. Predicting burr size in drilling of AISI 316L stainless steel using response surface analysis. Int J Mater Prod Technol. 2009;35(1/2):228–245.
  • Myers RH, Montgomery DC. Response surface methodology: process and product optimization using designed experiments. Hoboken (NJ): Wiley; 2016.
  • Myers RH. Response surface methodology. Boston: Allyn and Bacon; 1971.
  • Gunaraj V, Murugan N. Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes. J Mater Process Technol. 1999;88(1–3):266–275.
  • Choudhary DK, Jindal S, Mehta NP. To study the effect of welding parameters on weld bead geometry in SAW welding process. Elixir Mech Eng. 2011;40:5519–5524.
  • Al-Bukhaiti MA, Ahmed SM, Badran FMF, et al. Effect of impingement angle on slurry erosion behaviour and mechanisms of 1017 steel and high-chromium white cast iron. Wear. 2007;262(9–10):1187–1198.
  • Zahangir ALAM, Muyibi SA, Toramae J. Statistical optimization of adsorption processes for removal of 2,4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches. J Environ Sci. 2007;19(6):674–677.
  • Pant P, Chatterjee D, Nandi T, et al. Statistical modelling and optimization of clad characteristics in laser metal deposition of austenitic stainless steel. J Braz Soc Mech Sci Eng. 2019;41(7):283.
  • Usha M, Rao GS. Optimization of multiple objectives by genetic algorithm for turning of AISI 1040 steel using Al2O3 nano fluid with MQL. Tribol Ind. 2020;42(1):70–80.
  • Kumar HD, Ilangovan S, Radhika N. Optimization of cutting parameters for MRR, tool wear and surface roughness characteristics in machining ADC12 piston alloy using DOE. Tribol Ind. 2020;42(1):32–40.
  • Ravinder Reddy P, Himaja NLS, Vijaya Bharathi M, et al. Parameter optimization and prediction of bead geometry of SAW using response surface methodology. Int J Emerg Technol Comput Appl Sci. 2013;5(1):61–69.
  • Kumanan S, Edwin Raja Dhas J, Gowthaman K. Determination of submerged arc welding process parameters using Taguchi method and regression analysis. Indian J Eng Mater Sci. 2007;14:177–183.
  • Yi S, Su Y, Qi B, et al. Application of response surface methodology and central composite rotatable design in optimizing the preparation conditions of vinyltriethoxysilane modified silicate/polydimethylsiloxane hybrid pervaporation membranes. Sep Purif Technol. 2010;71(2):252–262.
  • Davim JP, Antonio Conceicao CA. Optimisation of cutting conditions in machining of aluminum matrix composites using a numerical and experimental model. Evol Comput. 2001;2(3):221–248.
  • Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput. 1994;2(3):221–248.
  • Deb K. An introduction to genetic algorithms. Sadhana. 1999;24(4–5):293–315.
  • Paulo Davim J, Conceicao Antonio CA. Optimisation of cutting conditions in machining of aluminium matrix composites using a numerical and experimental model. J Mater Process Technol. 2001;112(1):78–82.
  • Yildiz AR. Comparison of evolutionary-based optimization algorithms for structural design optimization. J Mater Process Technol. 2013;112(1):78–82.
  • Harmain GAUI, Amin I. An assessment of erosive wear of hydro-turbine steel using statistical modeling and optimization. Int J Surf Sci Eng. 2020;15(1):1–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.