146
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Design performance optimization of laser beam welded joints made for vehicle chassis application using deep neural network-based Krill Herd method

&
Pages 365-386 | Received 13 Oct 2022, Accepted 30 Jun 2023, Published online: 26 Jul 2023

References

  • Leggatt RH. Residual stresses in welded structures. Int J Press Vessel Pip. 2008;85(3):144–151. doi: 10.1016/j.ijpvp.2007.10.004
  • Rossini NS, Dassisti M, Benyounis K, et al. Methods of measuring residual stresses in components. Mater Des. 2012;35:572–588. doi: 10.1016/j.matdes.2011.08.022
  • Tankova T, da Silva LS, Balakrishnam M, et al. Residual stresses in welded I section steel members. Eng Struct. 2019;197:109398. doi: 10.1016/j.engstruct.2019.109398
  • Derakhshan ED, Yazdian N, Craft B, et al. Numerical simulation and experimental validation of residual stress and welding distortion induced by laser-based welding processes of thin structural steel plates in butt joint configuration. Opt Laser Technol. 2018;104:170–182. doi: 10.1016/j.optlastec.2018.02.026
  • Yu J, Kim D. Effects of welding current and torch position parameters on minimizing the weld porosity of zinc-coated steel. Int J Adv Manuf Technol. 2018;95(1–4):551–567. doi: 10.1007/s00170-017-1180-6
  • Ozerov M, Povolyaeva E, Stepanov N, et al. Laser beam welding of a Ti–15Mo/TiB metal–matrix composite. Metals. 2021;11(3):506. doi: 10.3390/met11030506
  • Svensson LE, Karlsson L, Söder R. Welding enabling light weight design of heavy vehicle chassis. Sci Technol Weld Join. 2015;20(6):473–482. doi: 10.1179/1362171814Y.0000000269
  • Moaaz AO, Ghazaly NM. A review of the fatigue analysis of heavy duty truck frames. Am J Eng Res. 2014;3(10):1–6.
  • Chen K, Chen H, Liu L, et al. Prediction of weld bead geometry of MAG welding based on XGBoost algorithm. Int J Adv Manuf Technol. 2019;101(9–12):2283–2295. doi: 10.1007/s00170-018-3083-6
  • Withers PJ. Residual stress and its role in failure. Rep Prog Phys. 2007;70(12):2211–2264. doi: 10.1088/0034-4885/70/12/R04
  • Dong P. Residual stresses and distortions in welded structures: a perspective for engineering applications. Sci Technol Weld Join. 2005;10(4):389–398. doi: 10.1179/174329305X29465
  • Junaid M, Khan FN, Rahman K, et al. Effect of laser welding process on the microstructure, mechanical properties and residual stresses in Ti–5Al–2.5 Sn alloy. Opt Laser Technol. 2017;97:405–419. doi: 10.1016/j.optlastec.2017.07.010
  • Franco A, Romoli L, Musacchio A. Modelling for predicting seam geometry in laser beam welding of stainless steel. Int J Therm Sci. 2014;79:194–205. doi: 10.1016/j.ijthermalsci.2014.01.003
  • Wits WW, Becker JJ. Laser beam welding of titanium additive manufactured parts. Proc CIRP. 2015;28:70–75. doi: 10.1016/j.procir.2015.04.013
  • Jelokhani-Niaraki MR, Arab NBM, Naffakh-Moosavy H, et al. The systematic parameter optimization in the Nd:YAG laser beam welding of inconel 625. Int J Adv Manuf Technol. 2016;84(9–12):2537–2546. doi: 10.1007/s00170-015-7833-4
  • Satyanarayana G, Narayana KL, Rao BN. Identification of optimum laser beam welding process parameters for E110 zirconium alloy butt joint based on Taguchi-CFD simulations. Lasers Manuf Mater Process. 2018;5(2):182–199. doi: 10.1007/s40516-018-0061-7
  • Myers RH, Dc M, Cm A-C. Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons; 2016.
  • Chelladurai SJS, Murugan K, Ray AP, et al. Optimization of process parameters using response surface methodology: a review. Mater Today Proc. 2021;37:1301–1304.
  • Yolmeh M, Jafari SM. Applications of response surface methodology in the food industry processes. Food Bioprocess Technol. 2017;10(3):413–433. doi: 10.1007/s11947-016-1855-2
  • Torabi A, Kolahan F. Optimizing pulsed Nd:YAG laser beam welding process parameters to attain maximum ultimate tensile strength for thin AISI316L sheet using response surface methodology and simulated annealing algorithm. Opt Laser Technol. 2018;103:300–310. doi: 10.1016/j.optlastec.2017.12.042
  • Shanmugarajan B, Shrivastava R, Sathiya P, et al. Optimization of laser welding parameters for welding of P92 material using Taguchi based grey relational analysis. Defence Technol. 2016;12(4):343–350. doi: 10.1016/j.dt.2016.04.001
  • Tutar M, Aydin H, Yuce C, et al. The optimization of process parameters for friction stir spot-welded AA3003-H12 aluminium alloy using a Taguchi orthogonal array. Mater Des. 2014;63:789–797. doi: 10.1016/j.matdes.2014.07.003
  • Schmidt PA, Pauleser T, Zaeh MF. Optimization of weld seam configurations using a genetic algorithm. Proc CIRP. 2014;25:393–399. doi: 10.1016/j.procir.2014.10.054
  • Sibalija TV. Particle swarm optimization in designing parameters of manufacturing processes: a review (2008–2018). Appl Soft Comput. 2019;84:105743. doi: 10.1016/j.asoc.2019.105743
  • Dabhade S, Dabhade O, Kolekar N, et al. Design and analysis of TATA 2518 TC chassis frame. Int J Res Eng Sci Manage. 2019;2(1):478–480.
  • Taraphdar PK, Thakare JG, Pandey C, et al. Novel residual stress measurement technique to evaluate through thickness residual stress fields. Mater Lett. 2020;277:128347. doi: 10.1016/j.matlet.2020.128347
  • Palanichamy P, Vasudevan M, Jayakumar T. Measurement of residual stresses in austenitic stainless steel weld joints using ultrasonic technique. Sci Technol Weld Join. 2009;14(2):166–171. doi: 10.1179/136217108X394753
  • Hill WJ, Hunter WG. A review of response surface methodology: a literature survey. Technometrics. 1966;8(4):571–590. doi: 10.2307/1266632
  • Khuri AI, Mukhopadhyay S. Response surface methodology. WIREs Comp Stat. 2010;2(2):128–149. doi: 10.1002/wics.73
  • Myers RH, Khuri AI, Carter WH. Response surface methodology: 1966–1988. Technometrics. 1989;31(2):137–157.
  • Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Proceedings of the Advances in Neural Information Processing Systems (NIPS); 2012. p. 1097–1105.
  • Ciresan D, Giusti A, Gambardella LM, et al. Deep neural networks segment neuronal membranes in electron microscopy images. Proceedings of the Advances in Neural Information Processing Systems (NIPS); 2012. p. 2852–2860.
  • Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [Online]; 2014. Available from: http://arxiv.org/abs/1409.4842
  • Ciregan D, Meier U, Schmidhuber J. Multi-column deep neural networks for image classification. Proceedings of the IEEE Computer Vision and Pattern Recognition; 2012. p. 3642–3649.
  • Collobert R, Weston J, Bottou L, et al. Natural language processing (almost) from scratch. J Mach Learn Res. 2011;12:2493–2537.
  • Socher R, Perelygin A, Wu J, et al. Recursive deep models for semantic compositionality over a sentiment treebank. Proceedings of the Empirical Methods in Natural Language Processing (EMNLP); 2013. p. 1631–1642.
  • Liu W, Wang Z, Liu X, et al. A survey of deep neural network architectures and their applications. Neurocomputing. 2017;234:11–26. doi: 10.1016/j.neucom.2016.12.038
  • Serre T, Kreiman G, Kouh M, et al. A quantitative theory of immediate visual recognition. Prog Brain Res. 2007;165:33–56.
  • Bengio Y, Lamblin P, Popovici D, et al. Greedy layer-wise training of deep networks. Adv Neural Inf Process Syst. 2007;19:153.
  • Wang GG, Guo L, Gandomi AH, et al. Chaotic Krill Herd algorithm. Inf Sci. 2014;274:17–34. doi: 10.1016/j.ins.2014.02.123
  • Wang GG, Gandomi AH, Alavi AH. Stud Krill Herd algorithm. Neurocomputing. 2014;128:363–370. doi: 10.1016/j.neucom.2013.08.031
  • Bolaji ALA, Al-Betar MA, Awadallah MA, et al. A comprehensive review: Krill Herd algorithm (KH) and its applications. Appl Soft Comput. 2016;49:437–446. doi: 10.1016/j.asoc.2016.08.041
  • Guo L, Wang GG, Gandomi AH, et al. A new improved Krill Herd algorithm for global numerical optimization. Neurocomputing. 2014;138:392–402. doi: 10.1016/j.neucom.2014.01.023
  • Wang GG, Gandomi AH, Alavi AH, et al. A comprehensive review of Krill Herd algorithm: variants, hybrids and applications. Artif Intell Rev. 2019;51(1):119–148. doi: 10.1007/s10462-017-9559-1
  • Abualigah LM, Khader AT, Hanandeh ES. Hybrid clustering analysis using improved Krill Herd algorithm. Appl Intell. 2018;48(11):4047–4071. doi: 10.1007/s10489-018-1190-6
  • Gandomi AH, Alavi AH. Krill Herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul. 2012;17(12):4831–4845. doi: 10.1016/j.cnsns.2012.05.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.