141
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Prediction of ultimate tensile strength of friction stir welding joint using deep learning-based-multilayer perceptron and long short term memory networks

, &
Pages 387-399 | Received 27 Apr 2023, Accepted 11 Jul 2023, Published online: 19 Jul 2023

References

  • Azeez S, Mashinini M, Akinlabi E. Sustainability of friction stir welded AA6082 plates through post-weld solution heat treatment. Proced Manuf. 2019;33:27–34. doi:10.1016/j.promfg.2019.04.005
  • Li W, Patel V. Solid state welding for fabricating metallic parts and structures. In: caballero FG, editor. Encyclopedia of materials: metals and alloys. Oxford: Elsevier; 2022. p. 246–259.
  • Khan NZ, Siddiquee AN, Khan ZA, et al. Microstructure evolution of friction stir welded dissimilar aerospace aluminium alloys. IOP Conf Ser: Mater Sci Eng. 2018;404:012002. doi:10.1088/1757-899X/404/1/012002
  • Simoncini M, Costa A, Fichera S, et al. Experimental analysis and optimization to maximize ultimate tensile strength and ultimate elongation of friction stir welded AA6082 aluminum alloy. Metals. 2020;11(1):69. doi:10.3390/met11010069
  • Mishra D, Prasad RS, Kumar S. ANFIS model to predict effect of tool pin length and position on tensile strength of friction stir welded joint. Weld Int. 2021;35(1-3):24–33. doi:10.1080/09507116.2021.1917972
  • Zolghadr P, Akbari M, Asadi P. Formation of thermo-mechanically affected zone in friction stir welding. Mater Res Express. 2019;6(8):086558. doi:10.1088/2053-1591/ab1d25
  • Akbari M, Asadi P. Dissimilar friction stir lap welding of aluminum to brass: modeling of material mixing using coupled eulerian–lagrangian method with experimental verifications. Proc Inst Mech Eng Part L. 2020;234(8):1117–1128. doi:10.1177/1464420720922560
  • Emamikhah A, Kazerooni A, Rakhshkhorshid M. A mechanical and microstructural study on friction stir welding of 5083 aluminum alloy based on optimal values of the response surface method. J Mater Eng Perform. 2022;31(11):9448–9461. doi:10.1007/s11665-022-06901-6
  • Akbari M, Rahimi Asiabaraki H. Modeling and optimization of tool parameters in friction stir lap joining of aluminum using RSM and NSGA II. Weld Int. 2023;37(1):21–33. doi:10.1080/09507116.2022.2164530
  • Asadi P, Akbari M, Besharati Givi MK, et al. Optimization of AZ91 friction stir welding parameters using taguchi method. Proc Inst Mech Eng Part L. 2016;230(1):291–302. doi:10.1177/1464420715570987
  • Ahmed S, Saha P. Selection of optimal process parameters and assessment of its effect in micro-friction stir welding of AA6061-T6 sheets. Int J Adv Manuf Technol. 2020;106(7-8):3045–3061. doi:10.1007/s00170-019-04840-6
  • Padmanaban R, Vignesh RV, Povendhan AP, et al. Optimizing the tensile strength of friction stir welded dissimilar aluminium alloy joints using particle swarm optimization. Mater Today: Proc. 2018;5:24820–24826.
  • Eren B, Guvenc MA, Mistikoglu S. Artificial intelligence applications for friction stir welding: a review. Met Mater Int. 2021;27(2):193–219. doi:10.1007/s12540-020-00854-y
  • Blake RW, Mathew R, George A, et al. Impact of artificial intelligence on engineering: past, present and future. Proced CIRP. 2021;104:1728–1733. doi:10.1016/j.procir.2021.11.291
  • Gao K, Basak S, Mondal M, et al. Friction stir welding of AA3003-clad AA6013 thin sheets: Microstructural changes related to tensile properties and fatigue failure mechanism. J Mater Res Technol. 2022;17:3221–3233. doi:10.1016/j.jmrt.2022.02.073
  • Anand R, Sridhar V. Microstructure and mechanical properties of interlock friction stir weld lap joint AA7475-T7 using fractional factorial design. Proc Inst Mech Eng Part C. 2022;236(1):318–329. doi:10.1177/0954406221996393
  • Abioye T, Zuhailawati H, Anasyida A, et al. Effects of particulate reinforcements on the hardness, impact and tensile strengths of AA 6061-T6 friction stir weldments. Proc Inst Mech Eng Part L. 2021;235(6):1500–1506. doi:10.1177/1464420721995544
  • Akbari M, Asadi P. Simulation and experimental investigation of multi-walled carbon nanotubes/aluminum composite fabrication using friction stir processing. Proc Inst Mech Eng Part E. 2021;235(6):2165–2179. doi:10.1177/09544089211034029
  • Mishra A, Sefene EM, Asmare A. Process parameter optimization of 6061AA Friction Stir Welded Joints using Supervised Machine Learning Regression-based Algorithms, 2021.
  • Verma S, Misra JP, Singh J, et al. Prediction of tensile behavior of FS welded AA7039 using machine learning. Mater Today Commun. 2021;26:101933. doi:10.1016/j.mtcomm.2020.101933
  • Krutzlinger M, Meltzer E, Muehlegg M, et al. Gaussian process regression to predict the morphology of friction-stir-welded aluminum/copper lap joints. Int J Adv Manuf Technol. 2019;102(5-8):1839–1852. doi:10.1007/s00170-018-03229-1
  • Shehabeldeen TA, Zhou J, Shen X, et al. Comparison of RSM with ANFIS in predicting tensile strength of dissimilar friction stir welded AA2024 -AA5083 aluminium alloys. Proced Manuf. 2019;37:555–562. doi:10.1016/j.promfg.2019.12.088
  • Huggett DJ, Liao TW, Wahab MA, et al. Prediction of friction stir weld quality without and with signal features. Int J Adv Manuf Technol. 2018;95(5-8):1989–2003. doi:10.1007/s00170-017-1403-x
  • Asadi P, Aliha MRM, Akbari M, et al. Multivariate optimization of mechanical and microstructural properties of welded joints by FSW method. Eng Fail Anal. 2022;140:106528. doi:10.1016/j.engfailanal.2022.106528
  • Kamal Babu K, Panneerselvam K, Sathiya P, et al. Parameter optimization of friction stir welding of cryorolled AA2219 alloy using artificial neural network modeling with genetic algorithm. Int J Adv Manuf Technol. 2018;94(9-12):3117–3129. doi:10.1007/s00170-017-0897-6
  • Ghetiya ND, Patel KM. Prediction of tensile strength in friction stir welded aluminium alloy using artificial neural network. Proced Technol. 2014;14:274–281. doi:10.1016/j.protcy.2014.08.036
  • Wang Q, Jiao W, Wang P, et al. A tutorial on deep learning-based data analytics in manufacturing through a welding case study. J Manuf Processes. 2021;63:2–13. doi:10.1016/j.jmapro.2020.04.044
  • Kotsiopoulos T, Sarigiannidis P, Ioannidis D, et al. Machine learning and deep learning in smart manufacturing: the smart grid paradigm. Comput Sci Rev. 2021;40:100341. doi:10.1016/j.cosrev.2020.100341
  • Vos K, Peng Z, Jenkins C, et al. Vibration-based anomaly detection using LSTM/SVM approaches. Mech Syst Sig Process. 2022;169:108752. doi:10.1016/j.ymssp.2021.108752
  • Opěla P, Schindler I, Kawulok P, et al. On various multi-layer perceptron and radial basis function based artificial neural networks in the process of a hot flow curve description. J Mater Res Technol. 2021;14:1837–1847. doi:10.1016/j.jmrt.2021.07.100
  • Radhakrishnan S, Nair SG, Isaac J. Multilayer perceptron neural network model development for mechanical ventilator parameters prediction by real time system learning. Biomed Signal Process Control. 2022;71:103170. doi:10.1016/j.bspc.2021.103170
  • Wei X, Zou N, Zeng L, et al. PolyJet 3D printing: predicting color by multilayer perceptron neural network. Ann 3D Printed Med. 2022;5:100049. doi:10.1016/j.stlm.2022.100049
  • Hochreiter S, Schmidhuber J. Long Short-Term memory. Neural Comput. 1997;9(8):1735–1780. doi:10.1162/neco.1997.9.8.1735
  • Patel SK, Parmar J, Katkar V. Graphene-based multilayer metasurface solar absorber with parameter optimization and behavior prediction using long Short-Term memory model. Renew Energy. 2022;191:47–58. doi:10.1016/j.renene.2022.04.040
  • Nasirtafreshi I. Forecasting cryptocurrency prices using recurrent neural network and long short-term memory. Data Knowl Eng. 2022;139:102009. doi:10.1016/j.datak.2022.102009
  • Sun C, Zhang Y, Huang G, et al. A soft sensor model based on long&short-term memory dual pathways convolutional gated recurrent unit network for predicting cement specific surface area. ISA Trans. 2022;130:293–305. doi:10.1016/j.isatra.2022.03.013
  • Dewan MW, Huggett DJ, Warren Liao T, et al. Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy inference system (ANFIS) and neural network. Mater Des. 2016;92:288–299. doi:10.1016/j.matdes.2015.12.005
  • Jin X, Guo J, Shen Y, et al. Application of singular spectrum analysis and multilayer perceptron in the mid-long-term polar motion prediction. Adv Space Res. 2021;68(9):3562–3573. doi:10.1016/j.asr.2021.06.039
  • Kingma DP, Ba J, Adam A. Method for Stochastic Optimization 2017.
  • Harrou F, Sun Y, Hering AS, et al. Unsupervised recurrent deep learning scheme for process monitoring, Elsevier BV; 2021.
  • Zuo H-M, Qiu J, Jia Y-H, et al. Ten-minute prediction of solar irradiance based on cloud detection and a long short-term memory (LSTM) model. Energy Rep. 2022;8:5146–5157. doi:10.1016/j.egyr.2022.03.182

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.