105
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Estimation of heat source model parameters for partial penetration of TIG welding using numerical optimization method

, , , &
Pages 400-416 | Received 23 Mar 2023, Accepted 20 Jul 2023, Published online: 09 Aug 2023

References

  • Jia X, Xu J, Liu Z, et al. A new method to estimate heat source parameters in gas metal arc welding simulation process. Fusion Eng Des. 2014;89(1):40–48. doi: 10.1016/j.fusengdes.2013.11.006
  • Zhang Z, Ge P, Zhao GZ. Numerical studies of post weld heat treatment on residual stresses in welded impeller. Int J Press Vessel. 2017;153:1–14. doi: 10.1016/j.ijpvp.2017.05.005
  • Zhan X, Mi G, Zhang Q, et al. The hourglass-like heat source model and its application for laser beam welding of 6 mm thickness 1060 steel. Int J Adv Manuf Technol. 2017;88(9–12):2537–2546. doi: 10.1007/s00170-016-8797-8
  • Rosenthal D. Mathematical theory of heat distribution during welding and cutting. Weld J. 1941;20:220–234.
  • Friedman E. Thermomechanical analysis of the welding process using tie finite element method. J Press Vessel Technol. 1975;97(3):206–213. doi: 10.1115/1.3454296
  • Eagar TW, Tsai NS. Temperature fields produced by traveling distributed heat sources use of a gaussian heat distribution in dimensionless form indicates final weld Pool shape can be predicted accurately for many welds and materials. Proceeding of the 64th annual American Welding Society meeting; 1983 Apr 24; Philadelphia, PA, USA. p. 346s–355s.
  • Wahab MA, Painter MJ, Davies MH. The prediction of the temperature distribution and weld pool geometry in the gas metal arc welding process. J Mater Process Technol. 1998;77(1–3):233–239. doi: 10.1016/S0924-0136(97)00422-6
  • Fan HG, Tsai HL, Na SJ. Heat transfer and fluid flow in a partially or fully penetrated weld Pool in gas tungsten arc welding. Int J Heat Mass Transf. 2001;44(2):417–428. doi: 10.1016/S0017-9310(00)00094-6
  • Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources. Metall Trans B. 1984;15(2):299–305. doi: 10.1007/BF02667333
  • Pu X, Zhang C, Li S, et al. Simulating welding residual stress and deformation in a multi-pass butt-welded joint considering balance between computing time and prediction accuracy. Int J Adv Manuf Technol. 2017;93(5–8):2215–2226. doi: 10.1007/s00170-017-0691-5
  • Klobčar D, Tušek J, Taljat B. Finite element modeling of GTA weld surfacing applied to hot-work tooling. Comput Mater Sci. 2004;31(3–4):368–378. doi: 10.1016/j.commatsci.2004.03.022
  • Sabapathy PN, Wahab MA, Painter MJ. Numerical models of in-service welding of gas pipelines. J Mater Process Technol. 2001;118(1–3):14–21. doi: 10.1016/S0924-0136(01)01032-9
  • Sabapathy PN, Wahab MA, Painter MJ. The prediction of burn-through during in-service welding of gas pipelines. Int J Press Vessel Pip. 2000;77(11):669–677. doi: 10.1016/S0308-0161(00)00056-9
  • Varma Prasad VM, Joy Varghese VM, Suresh MR, et al. 3D simulation of residual stress developed during TIG welding of stainless steel pipes. Proc Technol. 2016;24:364–371. doi: 10.1016/j.protcy.2016.05.049
  • Guo Q, Du B, Xu G, et al. Influence of filler metal on residual stress in multi-pass repair welding of thick P91 steel pipe. Int J Adv Manuf Technol. 2020;110(11–12):2977–2989. doi: 10.1007/s00170-020-05921-7
  • Li Z, Feng G, Deng D, et al. Investigating welding distortion of Thin-plate stiffened panel steel structures by means of thermal elastic plastic finite element method. J Mater Eng Perform. 2021;30(5):3677–3690. doi: 10.1007/s11665-021-05646-y
  • Azad N, Darvazi AR, Iranmanesh M. Effect of thermal distribution and stiffness variation on welding distortion in a ship panel structure. Arab J Sci Eng. 2019;44(12):10373–10387. doi: 10.1007/s13369-019-04043-x
  • Keivani R, Jahazi M, Pham T, et al. Predicting residual stresses and distortion during multisequence welding of large size structures using FEM. Int J Adv Manuf Technol. 2014;73(1–4):409–419. doi: 10.1007/s00170-014-5833-4
  • Singh S, Yadaiah N, Bag S, et al. Numerical simulation of welding-induced residual stress in fusion welding process using adaptive volumetric heat source. Proc Inst Mech Eng C J Mech Eng Sci. 2014;228(16):2960–2972. doi: 10.1177/0954406214525601
  • Moattari M, Shokrieh MM, Moshayedi H, et al. Evaluations of residual stresses in repair welding of Ni-based IN939 superalloy. J Therm Stresses. 2020;43(7):801–815. doi: 10.1080/01495739.2020.1751759
  • Zhao S, Li Y, Huang R, et al. Numerical study of the residual stress and welding deformation of mid-thick plate of AA6061-T6 in the multi-pass MIG welding process. J Mech Sci Technol. 2021;35(11):4931–4942. doi: 10.1007/s12206-021-1012-3
  • Sarmast A, Schubnell J, Farajian M. Finite element simulation of multi-layer repair welding and experimental investigation of the residual stress fields in steel welded components. Weld World. 2022;66(6):1275–1290. doi: 10.1007/s40194-022-01286-5
  • Li C, Huang Q, Xu Y, et al. Numerical simulation method of submerged arc surfacing process of rollers. Proc Inst Mech Eng C J Mech Eng Sci. 2022;236(10):5374–5390. doi: 10.1177/09544062211059687
  • Zhan X, Li Y, Ou W, et al. Comparison between hybrid laser-MIG welding and MIG welding for the invar36 alloy. Opt Laser Technol. 2016;85:75–84. doi: 10.1016/j.optlastec.2016.06.001
  • Wu CS, Hu QX, Gao JQ. An adaptive heat source model for finite-element analysis of keyhole plasma arc welding. Comput Mater Sci. 2009;46(1):167–172. doi: 10.1016/j.commatsci.2009.02.018
  • Li Y, Feng YH, Zhang XX, et al. An improved simulation of heat transfer and fluid flow in plasma arc welding with modified heat source model. Int J Therm Sci. 2013;64:93–104. doi: 10.1016/j.ijthermalsci.2012.08.007
  • Shehryar Khan M, Shahabad SI, Yavuz M, et al. Numerical modelling and experimental validation of the effect of laser beam defocusing on process optimization during fiber laser welding of automotive press-hardened steels. J Manuf Process. 2021;67:535–544. doi: 10.1016/j.jmapro.2021.05.006
  • Pyo C, Kim J, Kim J. Estimation of heat source model’s parameters for GMAW with non-linear global optimization—part I: application of multi-Island genetic algorithm. Metals. 2020;10(7):885. doi: 10.3390/met10070885
  • Attarha MJ, Sattari-Far I. Study on welding temperature distribution in thin welded plates through experimental measurements and finite element simulation. J Mater Process Technol. 2011;211(4):688–694. doi: 10.1016/j.jmatprotec.2010.12.003
  • Gu Y, Li YD, Yong Y, et al. Determination of parameters of double-ellipsoidal heat source model based on optimization method. Weld World. 2019;63(2):365–376. doi: 10.1007/s40194-018-00678-w
  • Mohanty UK, Sharma A, Abe Y, et al. Thermal modelling of alternating current square waveform arc welding. Case Stud Therm Eng. 2021;25:100885.
  • Martins Farias R, Teixeira P, Vilarinho L. Optimization of heat source parameters in numerical simulations of the GTAW welding process of AISI 304 butt joints. 25th International Congress of Mechanical Engineering; 2019 Oct 20–25; Uberlândia, MG, Brazil.
  • Varghese JVM, Sumanlal MS, Sarin P. Three-dimensional finite element optimization of bead shape developed during TIG welding of mild steel. Int J Appl Eng Res. 2018;13:104–109.
  • Sharma A, Arora N, Gupta SR. Investigation into arc behavior during Twin-Wire submerged arc welding. Mater Manuf Process. 2010;25(8):873–879. doi: 10.1080/15394450902996593
  • Sharma A, Chaudhary AK, Arora N, et al. Estimation of heat source model parameters for twin-wire submerged arc welding. Int J Adv Manuf Technol. 2009;45(11–12):1096–1103. doi: 10.1007/s00170-009-2046-3
  • Taraphdar PK, Thakare JG, Pandey C, et al. Novel residual stress measurement technique to evaluate through thickness residual stress fields. Mater Lett. 2020;277:128347. doi: 10.1016/j.matlet.2020.128347
  • Dak G, Pandey C. Experimental investigation on microstructure, mechanical properties, and residual stresses of dissimilar welded joint of martensitic P92 and AISI 304L austenitic stainless steel. Int J Press Vessels Pip. 2021;194:104536. doi: 10.1016/j.ijpvp.2021.104536
  • Taraphdar PK, Kumar R, Pandey C, et al. Significance of finite element models and solid-state phase transformation on the evaluation of weld induced residual stresses. Met Mater Int. 2021;27(9):3478–3492. doi: 10.1007/s12540-020-00921-4
  • Pandey C, Mahapatra MM, Kumar P, et al. Effect of weld consumable conditioning on the diffusible hydrogen and subsequent residual stress and flexural strength of multipass welded P91 steels. Metall Mater Trans B. 2018;49(5):2881–2895. doi: 10.1007/s11663-018-1314-8
  • Zhao L, Liang J, Zhong Q, et al. Numerical simulation on the effect of welding parameters on welding residual stresses in T92/S30432 dissimilar welded pipe. Adv Eng Softw. 2014;68:70–79. doi: 10.1016/j.advengsoft.2013.12.004
  • Gonçalves CV, Carvalho SR, Guimarães G. Application of optimization techniques and the enthalpy method to solve a 3D-Inverse problem during a TIG welding process. Appl Therm Eng. 2010;30(16):2396–2402. doi: 10.1016/j.applthermaleng.2010.06.009
  • Wu H, Guo Y, Wang H, et al. Prediction of double-sided arc welding deformation based on dynamic heat distribution model and TEP-FE approach. Int J Adv Manuf Technol. 2022;121(9–10):6361–6374. doi: 10.1007/s00170-022-09735-7
  • Lee SH, Kim ES, Park JY, et al. Numerical analysis of thermal deformation and residual stress in automotive muffler by MIG welding. J Comput Des Eng. 2018;5(4):382–390. doi: 10.1016/j.jcde.2018.05.001
  • Deng D, Murakawa H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Comput Mater Sci. 2006;37(3):269–277. doi: 10.1016/j.commatsci.2005.07.007
  • Joo SM, Bang HS, Bang HS, et al. Numerical investigation on welding residual stress and out-of-Plane displacement during the heat sink welding process of thin stainless steel sheets. Int J Precis Eng Manuf. 2016;17(1):65–72. doi: 10.1007/s12541-016-0009-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.