189
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Microstructural features and corrosion behavior of Inconel 625 components fabricated using Wire and Arc Additively Manufacturing (WAAM)

& ORCID Icon
Pages 617-625 | Received 11 Apr 2023, Accepted 05 Oct 2023, Published online: 18 Oct 2023

References

  • Adamiec P, Adamiec J. Aspects of pad welding of waste-incinerator boiler-elements with inconel 625 and 686 alloys. Weld Int. 2007;21(3):190–194. doi: 10.1533/wint.2007.3753
  • Rodrigues TA, Cipriano Farias FW, Avila JA, et al. Effect of heat treatments on inconel 625 fabricated by wire and arc additive manufacturing: an in situ synchrotron X-ray diffraction analysis. Sci Technol Weld Join. 2023;28(7):534–539.doi: 10.1080/13621718.2023.2187927
  • Huang W, Li Y, Yanjie REN, et al. Effect of scanning speed on the high-temperature oxidation resistance and mechanical properties of Inconel 625 alloys fabricated by selective laser melting. Vacuum. 2022;206:111447. doi: 10.1016/j.vacuum.2022.111447
  • Jeyaprakash N, Yang C-H, Prabu G, et al. Microstructure and tribological behaviour of inconel ‑ 625 superalloy produced by selective laser melting. Met. Mater. Int. 2022;28(12):2997–3015. doi: 10.1007/s12540-022-01198-5
  • Jia Z, Sun X, Ji J, et al. Effect of glass lubricant on the hot extrusion of inconel 625 alloy. Trans Indian Inst Met. 2020;73(11):2795–2805. doi: 10.1007/s12666-020-02084-7
  • Jeyaprakash N, Yang CH, Susila P, et al. Laser cladding of NiCrMoFeNbTa particles on Inconel 625 alloy: microstructure and corrosion resistance. Trans Indian Inst Met. 2023;76(2):599–612. doi: 10.1007/s12666-022-02701-7
  • Bellamkonda PN, Sudersanan M, Visvalingam B. A study on tensile properties and microstructural characteristics of wire arc additive manufactured low carbon steel cylindrical components. Weld Int. 2022;36(8):443–454. doi: 10.1080/09507116.2022.2097897
  • Hao T, Wang S, Wang X, et al. Effect of Y on microstructure and high temperature properties of wire-arc-additive-manufactured Al–Cu alloy deposits. Weld Int. 2022;36(9):522–529. doi: 10.1080/09507116.2022.2106804
  • Zhao H, Li Y, Sun Y, et al. Influence of deposit track on the forming and performance of wire arc additive manufactured 2319 aluminum alloy components. Weld Int. 2022;36(1):9–16. doi: 10.1080/09507116.2021.2017764
  • Tomar B, Shiva S, Nath T. A review on wire arc additive manufacturing: processing parameters, defects, quality improvement and recent advances. Mater Today Commun. 2022;31:103739. doi: 10.1016/j.mtcomm.2022.103739
  • Cheepu M, Lee CI, Cho SM. Microstructural characteristics of wire arc additive manufacturing with inconel 625 by Super-TIG welding. Trans Indian Inst Met. 2020;73(6):1475–1479. doi: 10.1007/s12666-020-01915-x
  • Selvi S, Vishvaksenan A, Rajasekar E. Cold metal transfer (CMT) technology – an overview. Def Technol. 2018;14(1):28–44. doi: 10.1016/j.dt.2017.08.002
  • Yin X, He G, Meng W, et al. Comparison study of low-heat-input wire arc-fabricated nickel-based alloy by cold metal transfer and plasma arc. J Mater Eng Perform. 2020;29(7):4222–4232. doi: 10.1007/s11665-020-04942-3
  • Karmuhilan M, Kumanan S. A review on additive manufacturing processes of Inconel 625. J Mater Eng Perform. 2021;31(4):2283–2592. doi: 10.1007/s11665-021-06427-3
  • Zhai W, Wu N, Zhou W. Effect of interpass temperature on wire arc additive manufacturing using high-strength metal-cored wire. Metals (Basel). 2022;12(2):212. doi: 10.3390/met12020212
  • Shen C, Pan Z, Cuiuri D, et al. Influences of deposition current and interpass temperature to the Fe3Al-based iron aluminide fabricated using wire-arc additive manufacturing process. Int J Adv Manuf Technol. 2017;88(5-8):2009–2018. doi: 10.1007/s00170-016-8935-3
  • Ma Y, Cuiuri D, Shen C, et al. Effect of interpass temperature on in-situ alloying and additive manufacturing of titanium aluminides using gas tungsten arc welding. Addit Manuf. 2015;8:71–77. doi: 10.1016/j.addma.2015.08.001
  • Ostovan F, Hasanzadeh E, Toozandehjani M, et al. Microstructure, hardness and corrosion behavior of gas tungsten arc welding clad inconel 625 super alloy over A517 carbon steel using ERNiCrMo3 filler metal. J. of Materi Eng and Perform. 2020;29(10:6919–6930. doi: 10.1007/s11665-020-05178-x
  • He K, Dong L, Wang Q, et al. Comparison on the microstructure and corrosion behavior of inconel 625 cladding deposited by tungsten inert gas and cold metal transfer process. Surf Coatings Technol. 2022;435:128245. doi: 10.1016/j.surfcoat.2022.128245
  • Wang X, Liu Z, Li J, et al. Effect of heat treatment on microstructure, corrosion resistance, and interfacial characteristics of inconel 625 laser cladding layer. Optik (Stuttg). 2022;270:169930. doi: 10.1016/j.ijleo.2022.169930
  • Feng J, Mao L, Yuan G, et al. Grain size effect on corrosion behavior of inconel 625 film against molten MgCl2-NaCl-KCl salt. Corros Sci. 2022;197:110097. doi: 10.1016/j.corsci.2022.110097
  • Li H, Liu S, Sun F, et al. Preliminary investigation on underwater wet welding of inconel 625 alloy: microstructure, mechanical properties and corrosion resistance. J Mater Res Technol. 2022;20:2394–2407. doi: 10.1016/j.jmrt.2022.08.035
  • Jie G, Qingchao M, Yan S, et al. Surface & coatings technology effect of Nb content on microstructure and corrosion resistance of inconel 625 coating formed by laser cladding. Surf Coat Technol. 2023;458:129311. doi: 10.1016/j.surfcoat.2023.129311
  • Karmuhilan M, Kumanan S. Location-dependent microstructure analysis and mechanical behavior of inconel 625 using cold metal transfer(CMT) based wire and arc additive manufacturing. Vacuum. 2023;207:111682. doi: 10.1016/j.vacuum.2022.111682
  • Lee Y, Nordin M, Babu SS, et al. Effect of fluid convection on dendrite arm spacing in laser deposition. Metall Mater Trans B. 2014;45(4):1520–1529.
  • Wu B, Pan Z, Ding D, et al. E ff ects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing. Addit Manuf. 2018;23:151–160. doi: 10.1016/j.addma.2018.08.004
  • Ge T, Chen L, Gu P, et al. Microstructure and corrosion resistance of TiC/inconel 625 composite coatings by extreme high speed laser cladding. Opt Laser Technol. 2022;150:107919. doi: 10.1016/j.optlastec.2022.107919
  • Sun P, Wang D, Song W, et al. Influence of W content on microstructure and corrosion behavior of laser cladded inconel 718 coating. Surf Coatings Technol. 2023;452:129079. doi: 10.1016/j.surfcoat.2022.129079
  • Ralston KD, Birbilis N, Davies CHJ. Revealing the relationship between grain size and corrosion rate of metals. Scr Mater. 2010;63(12):1201–1204. doi: 10.1016/j.scriptamat.2010.08.035
  • Zhang D, Harris SJ, McCartney DG. Microstructure formation and corrosion behaviour in HVOF-sprayed inconel 625 coatings. Mater Sci Eng A. 2003;344(1-2):45–56. doi: 10.1016/S0921-5093(02)00420-3
  • Kumar B, Anandakrishnan C. Investigation of the corrosion behavior of wire arc additively manufactured alloy 825. Trans Indian Inst Met. 2022;76:279–286. doi: 10.1007/s12666-022-02656-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.