63
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Microstructural characterization of simulated and actual constituent regions of P91 steel weldment

, &
Pages 13-33 | Received 03 May 2023, Accepted 24 Oct 2023, Published online: 04 Dec 2023

References

  • Cerjak H, Hofer P, Schaffernak B. The influence of microstructural aspects on the service behaviour of advanced power plant steels. ISIJ Int. 1999;39(9):874–888. doi: 10.2355/isijinternational.39.874
  • Masuyama F. History of power plants and progress in heat resistant steels. ISIJ Int. 2001;41(6):612–625. doi: 10.2355/isijinternational.41.612
  • Sikka VK, Ward CT, Thomas KC. Modified 9 Cr-1 Mo steel – an improved alloy for steam generator application. In: Khare AK, editor. International conference on ferritic steels high temperature applications. Metals Park (OH): ASM; 1983. p. 65–84.
  • Sikka VK. Development of modified 9Cr-1Mo steel for elevated temperature service. In: Davis JW, Michel DJ, editors. Ferritic alloys for use in nuclear energy technology. Pennsylvania, USA: TMS-AIME Warrendale; 1984. p. 317–324.
  • Cerjak H, Letofsky E. The effect of welding on the properties of advanced 9–12% Cr steels. Sci Tech Weld Join. 1996;1(1):36–42. doi: 10.1179/stw.1996.1.1.36
  • Raj B, Chellapandi P, Vasudeva Rao P. Sodium fast reactors with closed fuel cycle. Boca Raton: CRC Press; 2015.
  • Vitek JM, Klueh RL. Precipitation reactions during the heat treatment of ferritic steels. Metall Trans A. 1983;14(6):1047–1055. doi: 10.1007/BF02670443
  • Jones WB, Hills CR, Polonis DH. Microstructural evolution of modified 9Cr-1Mo steel. Metall Trans A. 1991;22(5):1049–1058. doi: 10.1007/BF02661098
  • Tsuchida Y, Okamoto K, Tokunaga Y. Study of creep rupture strength in heat affected zone of 9Cr-1Mo-V-Nb-N steel by welding thermal cycle simulation. Weld Int. 1996;10(6):454–460. doi: 10.1080/09507119609549030
  • Pandey C, Mahapatra MM, Kumar P, et al. Some studies on P91 steel and their weldments. J. Alloys Compd. 2018;743:332–364. doi: 10.1016/j.jallcom.2018.01.120
  • Pandey C, Mahapatra MM, Kumar P, et al. Effect of strain rate and notch geometry on tensile properties and fracture mechanism of creep strength enhanced ferritic P91 steel. J Nucl Mater. 2018;498:176–186. doi: 10.1016/j.jnucmat.2017.10.037
  • Chandravathi KS, Laha K, Bhanu Sankara Rao K, et al. Microstructure and tensile properties of modified 9Cr-1Mo steel (grade 91). Mater Sci Technol. 2001;17(5):559–565. doi: 10.1179/026708301101510212
  • Mariappan K, Shankar V, Bhaduri AK. Comparative evaluation of tensile properties of simulated heat affected zones of P91 steel weld joint. Mater High Temp. 2020;37(2):114–128. doi: 10.1080/09603409.2020.1713537
  • Ellis FV, Viswanathan R. Review of type IV cracking in piping welds. Integrated high temperature welds. London: Professional Publishing Ltd; 1998. p. 125–134.
  • Laha K, Chandravathi KS, Parameswaran P, et al. Characterization of microstructures across the heat-affected zone of the modified 9Cr-1Mo weld joint to understand its role in promoting type IV cracking. Metall Mater Trans A. 2007;38(1):58–68. doi: 10.1007/s11661-006-9050-0
  • Mayr P, Schlacher C, Mitsche S, et al. Critical issues with creep-exposed ferritic-martensitic welded joints for thermal power plants. In: Kulkarni DV, Samant M, Krishnan S, editors. International conference on global trends joining, cutting and surfacing technology. New Delhi (India): Narosa Publishing House Pvt. Ltd; 2011. p. 417–425.
  • Abd El-Azim ME, El-Desoky OE, Ruoff H, et al. Creep fracture mechanism in welded joints of P91 steel. Mater Sci Technol. 2013;29(9):1027–1033. doi: 10.1179/1743284713Y.0000000233
  • Sakthivel T, Laha K, Vasudevan M, et al. Type IV cracking behaviour of modified 9Cr-1Mo steel weld joints. Mater High Temp. 2016;3409:1–17.
  • Hsiao TH, Chen TC, Jeng SL, et al. Effects of simulated microstructure on the creep rupture of the modified 9Cr-1Mo steel. J Mater Eng Perform. 2016;25(10):4317–4325. doi: 10.1007/s11665-016-2270-6
  • Liao C-C, Wang C-C, Chen T-C, et al. Effects of thermal simulation on the creep fracture of the mod. 9Cr-1Mo weld metal. Metals. 2020;10(9):1181. doi: 10.3390/met10091181
  • Sireesha M, Albert SK, Sundaresan S. Microstructure and mechanical properties of weld fusion zones in modified 9Cr-1Mo steel. J Mater Eng Perform. 2001;10(3):320–330. doi: 10.1361/105994901770345033
  • Yajiang LI, Juan W, Bing Z, et al. XRD and TEM analysis of microstructure in the welding zone of 9Cr – 1Mo – V – Nb heat-resisting steel. Bull Mater Sci. 2002;25(3):213–217. doi: 10.1007/BF02711156
  • Marzocca AL, Luppo MI, Zalazar M. Identification of precipitates in weldments performed in an ASTM A335 Gr P91 steel by the FCAW process. Procedia Mater Sci. 2015;8:894–903. doi: 10.1016/j.mspro.2015.04.150
  • Yanet M, Mónica Z. Microstructure characterization of heat affected zone in single pass welding in 9Cr-1Mo steels. Procedia Mater Sci. 2015;8:904–913. doi: 10.1016/j.mspro.2015.04.151
  • Gutiérrez NZ, Alvarado JV, de Cicco H, et al. Microstructural study of welded joints in a high temperature martensitic-ferritic ASTM A335 P91 steel. Procedia Mater Sci. 2015;8:1140–1149. doi: 10.1016/j.mspro.2015.04.178
  • Wang Y, Kannan R, Li L. Characterization of as-welded microstructure of heat-affected zone in modified 9Cr-1Mo-V-Nb steel weldment. Mater Charact. 2016;118:225–234. doi: 10.1016/j.matchar.2016.05.024
  • Wang Y, Li L. Microstructure evolution of fine-grained heat-affected zone in type IV failure of P91 welds. Weld J. 2016;95:27s–236.
  • Milović L. Microstructural investigations of the simulated heat affected zone of the creep resistant steel P91. Mater High Temp. 2010;27(3):233–242. doi: 10.3184/096034010X12819801014958
  • Vuherer T, Dunder M, Milović LJ, et al. Microstructural investigation of the heat-affected zone of simulated welded joint of P91 steel. Metalurgija. 2013;52:317–320.
  • Sulaiman S, Dunne D. Microstructural and hardness investigations on simulated heat affected zone (HAZ) in P91 creep resisting steel. Solid State Sci Technol. 2007;15:102–107.
  • Celin R, Burja J, Kosec G. A comparison of as-welded and simulated heat affected zone (HAZ) microstructures. Mater. Tehnol. 2016;50(3):455–460. doi: 10.17222/mit.2016.006
  • Albert SK, Matsui M, Watanabe T, et al. Microstructural investigations on type IV cracking in a high Cr steel. ISIJ Int. 2002;42(12):1497–1504. doi: 10.2355/isijinternational.42.1497
  • Newell WF. Jr. Welding and PWHT of P91 steels. Weld J. 2010;89(4):33–36.
  • Newell N. Guideline for welding creep strength-enhanced ferritic alloys. EPRI. 2007.
  • Taniguchi G, Yamashita K. Effects of post weld heat treatment (PWHT) temperature on mechanical properties of weld metals for high-Cr. Kobelco Technol Rev. 2013;32:33–39.
  • Silwal B, Li L, Deceuster A, et al. Effect of postweld heat treatment on the toughness of heat-affected zone for grade 91 steel. Weld J. 2013;92:80–87.
  • Eggeler G, Ramteke A, Coleman M, et al. Analysis of creep in a welded “P91” pressure vessel. Int J Press Vessel Pip. 1994;60(3):237–257. doi: 10.1016/0308-0161(94)90125-2
  • Li L, Wright R, Lesica S. Effect of Post-Weld heat treatment on creep rupture properties of grade 91 steel heavy section welds. US Dep Energy; 2012. (Project No. 09-0799).
  • Khajuria A, Kumar R, Bedi R, et al. Impression creep studies on simulated reheated HAZ of P91 and P91b steels. Int J Mod Manuf Technol. 2018;10:50–56.
  • Mariappan K, Nagesha A. Creep-fatigue interaction behavior of simulated microstructures and the actual weldment of P91 steel. Mater Sci Eng A. 2023;866:144695. doi: 10.1016/j.msea.2023.144695
  • Shrestha T, Alsagabi SF, Charit I, et al. Effect of heat treatment on microstructure and hardness of grade 91 steel. Metals. 2015;5(1):131–149. doi: 10.3390/met5010131
  • Das CR, Albert SK, Swaminathan J, et al. Effect of boron on creep behaviour of inter-critically annealed modified 9Cr-1Mo steel. Procedia Eng. 2013;55:402–407. doi: 10.1016/j.proeng.2013.03.271
  • Kumar S, Sharma A, Pandey C, et al. Impact of subsequent pass weld thermal cycles on first-pass coarse grain heat-affected zone Õ s microstructure and mechanical properties of naval bainitic steel. J Mater Eng Perform. 2022;31(1):390–399. doi: 10.1007/s11665-021-06177-2
  • Laha K, Chandravathi KS, Rao KBS, et al. Hot tensile properties of simulated heat-affected zone microstructures of 9Cr1Mo weldment. Int J Press Vessel Pip. 1995;62(3):303–311. doi: 10.1016/0308-0161(94)00023-C
  • Mariappan K, Shankar V, Bhaduri AK. Effect of change in microstructures due to simulation temperatures on the low cycle fatigue behavior of P91 steel. Int J Fatigue. 2020;140:105847. doi: 10.1016/j.ijfatigue.2020.105847
  • Pandey C, Mahapatra MM, Kumar P, et al. Effect of post weld heat treatments on microstructure evolution and type IV cracking behavior of the P91 steel welds joint. J Mater Process Tech. 2019;266:140–154. doi: 10.1016/j.jmatprotec.2018.10.024
  • Pandey C, Mahapatra MM, Kumar P, et al. Homogenization of P91 weldments using varying normalizing and tempering treatment. Mater Sci Eng A. 2018;710:86–101. doi: 10.1016/j.msea.2017.10.086
  • Francis JA, Mazur W, Bhadeshia HKDH. Type IV cracking in ferritic power plant steels. Mater Sci Technol. 2006;22(12):1387–1395. doi: 10.1179/174328406X148778
  • Haarmann K, Vaillant JC, Vandenberghe B, et al. The T91/P91 book. 2nd ed. Boulogne, Vallourec-Mannesmann Tubes; 2002.
  • Richardot D, Vaillant JC, Arbab A, et al. The T92/P92 book. 1st ed. Boulogne: vallourec-Mannesmann tubes; 2000.
  • Bergquist EL. Consumables and welding modified 9Cr1Mo steel. Svetsaren. 1999;54:22–25.
  • Sawada K, Hara T, Tabuchi M, et al. Microstructure characterization of heat affected zone after welding in mod.9Cr-1Mo steel. Mater Charact. 2015;101:106–113. doi: 10.1016/j.matchar.2015.01.013
  • Isasti N, Jorge-Badiola D, Alkorta J, et al. Analysis of complex steel microstructures by high-resolution EBSD. JOM. 2016;68(1):215–223. doi: 10.1007/s11837-015-1677-0
  • Wang Y. Microstructure and creep behavior of heat-affected zone in grade 91 steel weldments [PhD Thesis]. University of Alberta; 2017.
  • Yu X. Multi-scale characterization of heat-affected zone in martensitic steels. Columbus: The Ohio State University; 2012.
  • Mariappan K, Nagesha A, Vasudevan M, et al. Characterization of the cyclic deformation behavior of simulated HAZs and other constituent microstructural regions of P91 steel weldment. Int J Fatigue. 2022;164:107118. doi: 10.1016/j.ijfatigue.2022.107118
  • Paddea S, Francis JA, Paradowska AM, et al. Residual stress distributions in a P91 steel-pipe girth weld before and after post weld heat treatment. Mater Sci Eng A. 2012;534:663–672. doi: 10.1016/j.msea.2011.12.024
  • Schwartz AJ, Kumar M, Adams BL, et al. Electron backscatter diffraction in materials science. Boston (MA): Springer; 2009. p. 1–20.
  • Wright SI, Nowell MM, Field DP. A review of strain analysis using electron backscatter diffraction. Microsc Microanal. 2011;17(3):316–329. doi: 10.1017/S1431927611000055
  • Cho JH, Rollett AD, Cho JS, et al. Investigation of recrystallization and grain growth of copper and gold bonding wires. Metall Mater Trans A. 2006;37(10):3085–3097. doi: 10.1007/s11661-006-0189-5
  • Ramini M, Surian E, Zalazar M, et al. Characterization of circumferential welds of 9Cr advanced steels: Part 1. Soldagem & Inspeção. 2012;19(1):10–18.
  • Isamu N, Shoji T, Shigemitu K, et al. Creep-fatigue life evaluation for weldments of modified 9Cr-1Mo steel at boiler temperatures. Mater High Temp. 1998;15:69–73.
  • Mariappan K, Shankar V, Bhaduri AK. Effect of microstructure and low cycle fatigue deformation on tensile properties of P91 steel. Materialwissenschaft Werkst. 2020;51(8):1088–1099. doi: 10.1002/mawe.201900162
  • Burik P, Pesek L, Kejzlar P, et al. Effect of crystallographic orientations of grains on the global mechanical properties of steel sheets by depth sensing indentation. J Physics Conf Series. 2017;790(1):012003.
  • Haušild P, Materna A, Nohava J. Effect of crystallographic orientation on hardness and indentation modulus in austenitic stainless steel. KEM. 2013;586:31–34. doi: 10.4028/www.scientific.net/KEM.586.31

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.