55
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Physical simulation of low temperature phase separation during multipass welding of super duplex stainless steel

&
Pages 290-297 | Received 16 Oct 2023, Accepted 07 Mar 2024, Published online: 20 Mar 2024

References

  • Gunn R. Duplex stainless steels: microstructure, properties and applications. Sawston: Woodhead Publishing; 1997.
  • Baddoo N, Kosmac A. Sustainable duplex stainless steel bridges. 8th Duplex Stainless Steels Conference. Ascot (UK): Steel Construction Institute (SCI); 2010. Available online: https://www.worldstainless.org/files/issf/non-image-files/PDF/Sustainable_Duplex_Stainless_Steel_Bridges.pdf
  • Francis R, Byrne G. Duplex stainless steels—alloys for the 21st century. Metals. 2021;11(5):836. doi:10.3390/met11050836
  • Charles J. Duplex stainless steels, a review after DSS’07 in Grado. Metall Res Technol. 2008;105(3):155–171.
  • Nilsson J-O. Super duplex stainless steels. Mater Sci Technol. 1992;8(8):685–700. doi:10.1179/mst.1992.8.8.685
  • Karlsson L, Arcini H. Welding duplex stainless steels-A review of current recommendations. Weld World. 2012;56(9–10):41–47. doi:10.1007/BF03321380
  • Hosseini V. Super duplex stainless steels: microstructure and properties of physically simulated base and weld metal. Trollhättan: University West; 2018.
  • Örnek C, Engelberg DL. Correlative EBSD and SKPFM characterisation of microstructure development to assist determination of corrosion propensity in grade 2205 duplex stainless steel. J Mater Sci. 2016;51(4):1931–1948. doi:10.1007/s10853-015-9501-3
  • Pohl M, Storz O. Sigma-phase in duplex-stainless steels. Int J Mater Res. 2004;95(7):631–638. doi:10.1515/ijmr-2004-0120
  • Cabrera J, Mateo A, Llanes L. Hot deformation of duplex stainless steels. J Mater Process Technol. 2003;143–144:321–325. doi:10.1016/S0924-0136(03)00434-5
  • Posch G, Chladil K, Chladil H. Material properties of CMT—metal additive manufactured duplex stainless steel blade-like geometries. Weld World. 2017;61(5):873–882. doi:10.1007/s40194-017-0474-5
  • Hejripour F, Binesh F, Hebel M, et al. Thermal modeling and characterization of wire arc additive manufactured duplex stainless steel. J Mater Process Technol. 2019;272:58–71. doi:10.1016/j.jmatprotec.2019.05.003
  • Hosseini VA, Thuvander M, Wessman S, et al. Spinodal decomposition in functionally graded super duplex stainless steel and weld metal. Metall Mater Trans A. 2018;49(7):2803–2816. doi:10.1007/s11661-018-4600-9
  • Örnek C, Burke M, Hashimoto T, et al. 748 K (475° C) embrittlement of duplex stainless steel: effect on microstructure and fracture behavior. Metall Mater Trans A. 2017;48(4):1653–1665. doi:10.1007/s11661-016-3944-2
  • Thuvander M, Zhou J, Odqvist J, et al. Observations of copper clustering in a 25Cr-7Ni super duplex stainless steel during low-temperature aging under load. Philos Mag Lett. 2012;92(7):1–8. doi:10.1080/09500839.2012.672773
  • Lach TG, Frazier WE, Wang J, et al. Precipitation-site competition in duplex stainless steels: Cu clusters vs spinodal decomposition interfaces as nucleation sites during thermal aging. Acta Mater. 2020;196:456–469. doi:10.1016/j.actamat.2020.05.017
  • Liu X, Lu W, Zhang X. Reconstructing the decomposed ferrite phase to achieve toughness regeneration in a duplex stainless steel. Acta Mater. 2020; 183:51–63. doi:10.1016/j.actamat.2019.11.008
  • Smuk O, Nenonen P, Hänninen H, et al. Precipitation of secondary phases in duplok 27 duplex stainless steel with emphasis on copper effects. 2002.
  • Xu X, Odqvist J, Colliander MH, et al. Effect of cooling rate after solution treatment on subsequent phase separation during aging of Fe-Cr alloys: a small-angle neutron scattering study. Acta Mater. 2017;134:221–229. doi:10.1016/j.actamat.2017.06.001
  • Liu J, Das Y, Babu RP, et al. Small-angle neutron scattering study on phase separation in a super duplex stainless steel at 300° C–comparing hot-rolled and TIG welded material. Mater Charact. 2022;190:112044. doi:10.1016/j.matchar.2022.112044
  • Sakata M, Kadoi K, Inoue H. Mechanism for enhanced age hardening of 22% Cr duplex stainless steel weld metal fabricated with grade 2209 filler material. Mater Today Commun. 2022;33:104201. doi:10.1016/j.mtcomm.2022.104201
  • Zhou J, Odqvist J, Thuvander M, et al. Concurrent phase separation and clustering in the ferrite phase during low temperature stress aging of duplex stainless steel weldments. Acta Mater. 2012;60(16):5818–5827. doi:10.1016/j.actamat.2012.07.022
  • Hosseini VA, Högström M, Hurtig K, et al. Wire-arc additive manufacturing of a duplex stainless steel: thermal cycle analysis and microstructure characterization. Weld World. 2019;63(4):975–987. doi:10.1007/s40194-019-00735-y
  • Eriksson MCF, Lervåg M, Sørensen C, et al. Additive manufacture of superduplex stainless steel using WAAM. 2018.
  • Jin W, Zhang C, Jin S, et al. Wire arc additive manufacturing of stainless steels: a review. Appl Sci. 2020;10(5):1563. doi:10.3390/app10051563
  • Hosseini VA, Thuvander M, Lindgren K, et al. Fe and Cr phase separation in super and hyper duplex stainless steel plates and welds after very short aging times. Mater Des. 2021;210:110055. doi:10.1016/j.matdes.2021.110055
  • Hosseini VA, Thuvander M, Lindgren K, et al. Influence of fabrication route and copper content on nature and kinetics of 475˚ C‐embrittlement in Cu‐containing super duplex stainless steels. Steel Res Int. 2023;94(12):2200987.
  • Hosseini VA, Hurtig K, Karlsson L. Bead by bead study of a multipass shielded metal arc-welded super-duplex stainless steel. Weld World. 2020;64(2):283–299. doi:10.1007/s40194-019-00829-7
  • Zhou J, Odqvist J, Thuvander M, et al. Quantitative evaluation of spinodal decomposition in Fe-Cr by atom probe tomography and radial distribution function analysis. Microsc Microanal. 2013;19(3):665–675. doi:10.1017/S1431927613000470
  • Hosseini VA, Valiente Bermejo MA, Gårdstam J, et al. Influence of multiple thermal cycles on microstructure of heat-affected zone in TIG-welded super duplex stainless steel. Weld World. 2016;60(2):233–245. doi:10.1007/s40194-016-0300-5
  • Xu X, Westraadt JE, Odqvist J, et al. Effect of heat treatment above the miscibility gap on nanostructure formation due to spinodal decomposition in Fe-52.85 at.% Cr. Acta Mater. 2018;145:347–358. doi:10.1016/j.actamat.2017.12.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.