61
Views
0
CrossRef citations to date
0
Altmetric
Review

Investigating the effect of process parameters on corrosion resistance and associated properties for friction stir welded AA5083

, &
Pages 298-318 | Received 12 Oct 2023, Accepted 25 Mar 2024, Published online: 31 Mar 2024

References

  • Grujicic M, Arakere G, Yalavarthy H, et al. Modelling of AA5083 material-microstructure evolution during butt friction-stir welding. J of Materi Eng and Perform. 2010;19(5):672–684. doi: 10.1007/s11665-009-9536-1
  • Buffa G, Fratini L, Arregi B, et al. A new friction stir welding based technique for corner fillet joints: experimental and numerical study. Int J Mater Form. 2010;3(S1):1039–1042. doi: 10.1007/s12289-010-0948-0
  • Majeed T, Mehta Y, Siddiquee AN. Precipitation-dependent corrosion analysis of heat treatable aluminium alloys via friction stir welding, a review. Proc Inst Mech Eng., Part C. 2021;235(24):7600–7626. doi: 10.1177/09544062211003609
  • Zhang YN, Cao X, Larose S, et al. Review of tools for friction stir welding and processing. Can Metall Q. 2012;51(3):250–261. doi: 10.1179/1879139512Y.0000000015
  • Rathinasuriyan C, Pavithra E, Sankar R, et al. Current status and development of submerged friction stir welding: a review. Int J of Precis Eng and Manuf-Green Tech. 2021;8(2):687–701. doi: 10.1007/s40684-020-00187-6
  • Donatus U, Thompson GE, Zhou X, et al. Corrosion susceptibility of dissimilar friction stir welds of AA5083 and AA6082 alloys. Mater Charact. 2015;107:85–97. doi: 10.1016/j.matchar.2015.07.002
  • Arunprasad RV, Surendhiran G, Ragul M, et al. Review on friction stir welding process. Int J Appl Eng Res. 2018;13(8):5750–5758.
  • Madhusudhan Reddy G, Srinivasa Rao K. Enhancement of wear and corrosion resistance of cast A356 aluminium alloy using friction stir processing. Trans Indian Inst Met. 2010;63(5):793–798. doi: 10.1007/s12666-010-0121-y
  • Sethi SR, Das A, Baruah M. A review on friction stir welding: a sustainable way of manufacturing. Mater Today. 2021;44:2685–2688. doi: 10.1016/j.matpr.2020.12.682
  • Esmaily M, Mortazavi N, Osikowicz W, et al. Corrosion behaviour of friction stir-welded AA6005-T6 using a bobbin tool. Corros Sci. 2016;111:98–109. doi: 10.1016/j.corsci.2016.04.046
  • Hefti LD. Commercial aeroplane application of superplastically formed AA5083 aluminium sheet. J Materi Eng Perform. 2007;16(2):136–141. doi: 10.1007/s11665-007-9023-5
  • Rani P, Goyat V, Dhull S, et al. Multi-objective parametric optimisation of FSW for mechanical properties of AA5083 joint. Mater Today: Proc. 2022;65:3793–3798. doi: 10.1016/j.Matpr.2022.06.486
  • Landolfo R, Cascini L, Portioli F. Modeling of metal structure corrosion damage: a state of the art report. Sustainability. 2010;2(7):2163–2175. doi: 10.3390/su2072163
  • Abolusoro OP, Akinlabi ET. Wear and corrosion behaviour of friction stir welded aluminium alloys- An overview. Int J Mech Prod Eng Res Dev. 2019;9(3):967–982. doi: 10.24247/ijmperdjun2019105
  • Lin YJ, Lin CS. Galvanic corrosion behaviour of friction stir welded AZ31B magnesium alloy and 6NO1 aluminium alloy dissimilar joints. Corros Sci. 2021;180:109203. doi: 10.1016/j.corsci.2020.109203
  • Zhang C, Huang G, Cao Y, et al. Investigation of microstructure and localised corrosion behaviour in the stir zone of dissimilar friction stir welded AA2024/7075 joint. J Mater Sci. 2020;55(30):15005–15032. doi: 10.1007/s10853-020-05072-w
  • Gharavi F, Matori KA, Yunus R, et al. Corrosion behaviour of Al6061 alloy weldment produced by friction stir welding process. J Mater Res Technol. 2015;4(3):314–322. doi: 10.1016/j.jmrt.2015.01.007
  • Zamrudi FH, Setiawan AR. Effect of friction stir welding parameters on corrosion behaviour of aluminium alloys: an overview. Corros Eng., Sci Technol. 2022;57(7):696–707. doi: 10.1080/1478422X.2022.2116185
  • Bagheri Hariri M, Gholami Shiri S, Yaghoubinezhad Y, et al. The optimum combination of tool rotation rate and travelling speed for obtaining the preferable corrosion behaviour and mechanical properties of friction stir welded AA5052 aluminium alloy. Mater Des. 2013;50:620–634. doi: 10.1016/j.matdes.2013.03.027
  • Choi DH, Ahn BW, Quesnel DJ, et al. The behaviour of β phase (Al3Mg2) in AA 5083 during friction stir welding. Intermetallics. 2013;35:120–127. doi: 10.1016/j.intermet.2012.12.004
  • Ghangas G, Goyat V, Sirohi S, et al. Investigation for mechanical properties of dissimilar friction stir welded joints of AA5083 and pure Cu. Mater Today: Proc. 2022;56:77–81. doi: 10.1016/j.matpr.2021.12.163
  • Karrar G, Galloway A, Toumpis A, et al. Microstructural characterization and mechanical properties of dissimilar AA5083-copper joints produced by friction stir welding. J Mater Res Technol. 2020;9(5):11968–11979. doi: 10.1016/j.jmrt.2020.08.073
  • Bisadi H, Tavakoli A, Tour Sangsaraki M, et al. The influence of rotational and welding speeds on microstructure and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints. Mater Des. 2013;43:80–88. doi: 10.1016/j.matdes.2012.06.029
  • Galvão I, Leal RM, Loureiro A, et al. Material flow in heterogeneous friction stir welding of aluminium and copper thin sheets. Sci Technol Weld Joining. 2010;15(8):654–660. doi: 10.1179/136217110X12785889550109
  • Ning J, Gao W, Gu X, et al. Precipitation behaviour and corrosion properties of friction stir welded AA5083 Al–Mg alloy after sensitization. Mater Charact. 2023;199:1–15. doi: 10.1016/j.Matchar.2023.112782
  • Davoodi A, Esfahani Z, Sarvghad M. Microstructure and corrosion characterization of the interfacial region in dissimilar friction stir welded AA5083 to AA7023. Corros Sci. 2016;107:133–144. doi: 10.1016/j.corsci.2016.02.027
  • Ahmed MMZ, Ataya S, El-Sayed Seleman MM, et al. Friction stir welding of similar and dissimilar AA7075 and AA5083. J Mater Process Technol. 2017;242:77–91. doi: 10.1016/j.jmatprotec.2016.11.024
  • Koilraj M, Sundareswaran V, Vijayan S, et al. Friction stir welding of dissimilar aluminium alloys AA2219 to AA5083 - Optimization of process parameters using Taguchi technique. Mater Des. 2012;42:1–7. doi: 10.1016/j.matdes.2012.02.016
  • Gungor B, Kaluc E, Taban E, et al. Mechanical, fatigue and microstructural properties of friction stir welded 5083-H111 and 6082-T651 aluminium alloys. Mater Des. 2014;56:84–90. doi: 10.1016/j.matdes.2013.10.090
  • Kumar KK, Kumar A, Satyanarayana MVNV. Enhancing corrosion resistance and mechanical properties of dissimilar friction stir welded 5083-6061 aluminium alloys using an external cooling environment. Proc Inst Mech Eng., Part L. 2021;235(12):2692–2708. doi: 10.1177/14644207211032335
  • Peel MJ, Steuwer A, Withers PJ. Dissimilar friction stir welds in AA5083-AA6082. Part II: process parameter effects on microstructure. Metall Mater Trans A. 2006;37(7):2195–2206. doi: 10.1007/BF02586139
  • Ahmed MMZ, Ataya S, El-Sayed Seleman MM, et al. Metals heat input and mechanical properties investigation of friction stir welded AA5083/AA5754 and AA5083/AA7020. Met. 2020;11(1):68. doi: 10.3390/met11010068
  • Selamat NFM, Baghdadi AH, Sajuri Z, et al. Friction stir welding of similar and dissimilar aluminium alloys for automotive applications. Int J Automot Mech Eng. 2016;13(2):3401–3412. doi: 10.15282/ijame.13.2.2016.9.0281
  • Svensson LE, Karlsson L, Larsson H, et al. Microstructure and mechanical properties of friction stir welded aluminium alloys with special reference to AA 5083 and AA 6082. Sci Technol Weld Joining. 2000;5(5):285–296. doi: 10.1179/136217100101538335
  • Padmavathi T, Naik BB. Influence of tool pin profile on material flow, mechanical properties, and corrosion behaviour of friction stir welded dissimilar Al5083-6061. Eng Res Express. 2023;5(2):025031. doi: 10.1088/2631-8695/accdb7
  • Kumar KK, Kumar A, Satyanarayana MVNA. Effect of friction stir welding parameters on the material flow, mechanical properties and corrosion behaviour of dissimilar AA5083-AA6061 joints. Proc Institut Mech Engin Part C: J Mech Eng Sci. 2022;236(6):2901–2917. doi: 10.1177/09544062211036102
  • Sahu M, Paul A, Ganguly S. Optimization of process parameters of friction stir welded joints of marine grade AA 5083. Mater Today: Proc. 2021;44:2957–2962. doi: 10.1016/j.matpr.2021.01.938
  • Dada OJ, Polese C, Cornish LA, et al. SEM characterization of microstructure, tunnels, and quasi-static failure in AA5083-H111 friction stir welds. SAIW/IIW Reg Congr. 2012.
  • Peel M, Steuwer A, Preuss M, et al. Microstructure, mechanical properties, and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Mater. 2003;51(16):4791–4801. doi: 10.1016/S1359-6454(03)00319-7
  • Kumar PS, Devaraju A. Influence of tool rotational speed and pin profile on mechanical and microstructural characterization of friction stir welded 5083 aluminium alloy. Mater Today: Proc. 2018;5(2):3518–3523.
  • Tran HT, Tu HM. Effect of welding speed on the mechanical properties of friction stir welded aluminium alloy 5083. VJSTE. 2020;62(3):45–48. doi: 10.31276/VJSTE.62(3).45-48
  • Zhou N, Song D, Qi W, et al. Influence of the kissing bond on the mechanical properties and fracture behaviour of AA5083-H112 friction stir welds. Mater Sci Eng A. 2018;719:12–20. doi: 10.1016/j.msea.2018.02.011
  • Faizul N, Seman AA, Hussain Z, et al. Effect of tool rotational speed on microstructure and mechanical properties of friction stir welded joint of ultrafine-grained AA5083 alloy. Malaysian J Microscopy. 2021;17(2):55–65.
  • Nhan PT. Effect of the welding parameters on mechanical properties of AA5083 friction stir welding. GTSD. 5th International Conference on green technology and sustainable development; 2020. doi: 10.1109/GTSD50082.2020.9303056
  • Bisadi H, Tour M, A A. The influence of process parameters on microstructure and mechanical properties of friction stir welded Al 5083 alloy lap joint. Am J Mater Sci. 2012;1(2):93–97. doi: 10.5923/j.materials.20110102.15
  • Ozel K, Cetinarslan CS, Sahin M. Mechanical properties of friction stir welded 5083 aluminium alloys. Mater Test. 2017;59(1):64–68. doi: 10.3139/120.110965
  • Sattari S, Bisadi H, Sajed M. Mechanical properties and temperature distributions of thin friction stir welded sheets of AA5083. MECHANICS. 2012;2(1):1–6. doi: 10.5923/j.mechanics.20120201.01
  • Chien CH, Lin WB, Chen T. Optimal FSW process parameters for aluminium alloys AA5083. J Chin Inst Eng. 2011;34(1):99–105. doi: 10.1080/02533839.2011.553024
  • Kundu J, Ghangas G, Rattan N. Effect of different parameters on heat generation and tensile strength of FSW AA5083 joint. Int J Curr Eng Technol. 2017;7(3):1170–1174. Available at http://inpressco.com/category/ijcet
  • Rahmatian B, Mirsalehi SE, Dehghani K. Metallurgical and mechanical characterization of double-sided friction stir welded thick AA5083 aluminium alloy joints. Trans Indian Inst Met. 2019;72(10):2739–2751. doi: 10.1007/s12666-019-01751-8
  • Saravanakumar R, Krishna K, Rajasekaran T, et al. Investigations on friction stir welding of AA5083-H32 marine grade aluminium alloy by the effect of varying the process parameters. IOP Conf Ser: Mater Sci Eng. 2018;402(1):012187. doi: 10.1088/1757-899X/402/1/012187
  • Pramod R, Jain VKS, Kumar SM, et al. Experimental studies on friction stir welding of aluminium alloy 5083 and prediction of temperature distribution using arbitrary Lagrangian–Eulerian-based finite element method. Proc Inst Mech Eng., Part L. 2022;236(5):1067–1076. doi: 10.1177/14644207211068118
  • Al-Roubaiy AO, Nabat SM, Batako AD. An investigation into friction stir welding of aluminium alloy 5083-H116 similar joints. Mater Today: Proc. 2020;22:2140–2152. doi: 10.1016/j.matpr.2020.03.281
  • Torzewski J, Łazińska M, Grzelak K, et al. Microstructure and mechanical properties of dissimilar friction stir welded joint AA7020/AA5083 with different joining parameters. Mater. 2022;15(5):1910. doi: 10.3390/ma15051910
  • Singh L, Al Haque MS, Singh A, et al. Study and optimize tensile strength of FSW joints using AA5083 filler by Taguchi and Anova. Mater Today: Proc. 2022;48:1718–1722. doi: 10.1016/j.matpr.2021.10.029
  • Gummadi AK, Amudha K, Rao MS, et al. Effect of process parameters of mechanical studies on friction stir welded AA5083 by GRA. Mater Today: Proc. 2023;77:540–544. doi: 10.1016/j.matpr.2022.12.253
  • Joshi V, Balasubramaniam K, Prakash RV. Study of defects in friction stir welded AA5083 by radiography, ultrasonic, and phased array ultrasonic technique. Proceedings of the National Seminar and Exhibition on Non-Destructive Evaluation. 2011:p. 1–7.
  • Salavaravu L, Dumpala L. Effects of process parameters on mechanical and metallurgical properties of AA5083 weld bead and optimization by using Taguchi-based grey relational analysis and ANOVA of submerged friction stir welding. J Eng Res. 2022;10(3):182–193. doi: 10.36909/jer.10001
  • Kishta EE, Darras B. Experimental investigation of underwater friction-stir welding of 5083 marine-grade aluminium alloy. Proc Inst Mech Eng., Part B. 2016;230(3):458–465. doi: 10.1177/0954405414555560
  • Raweni A, Majstorović V, Sedmak A, et al. Optimization of AA5083 friction stir welding parameters using the Taguchi method. Teh Vjesn. 2018;25(3):861–866. doi: 10.17559/TV-20180123115758
  • Singh A, Singh PK, Kumar RR, et al. A comparative study on fracture parameters of friction stir welded AA5083 using NCORR. AIP Conf Proc. 2021. doi: 10.1063/5.0049977
  • Maji K, Kumar S, Kumar G. Experimental study on the effects of incremental forming and friction stir welding on formability of AA5083 sheet. J Phys: Conf Ser. 2019;1240(1):012090. doi: 10.1088/1742-6596/1240/1/012090
  • Emamikhah A, Kazerooni A, Rakhshkhorshid M. Evaluation of dynamic recrystallization phenomenon in friction stir welding of AA5083-O by cellular automata finite element approach. Trans Indian Inst Met. 2023;76(8):2055–2062. doi: 10.1007/s12666-023-02912-6
  • Habba MI, Alsaleh NA, Badran TE, et al. Comparative study of FSW, MIG, and TIG welding of AA5083-H111 based on the evaluation of welded joints and economic aspect. Mater. 2023;16(14):5124. doi: 10.3390/ma16145124
  • Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng. 2005;50(1–2):1–78. doi: 10.1016/j.mser.2005.07.001
  • Jesus JS, Gruppelaar M, Costa JM, et al. Effect of geometrical parameters on friction stir welding of AA 5083-H111 T-joints. Proc Str Int. 2016;1:242–248. doi: 10.1016/j.prostr.2016.02.033
  • Said MTSM, Hamid D, Ismail A, et al. The effect of pin size on friction stir welded AA5083 plate lap joint. Int Conf Prod Auto Mech Eng. 2015:85–92. doi: 10.17758/ER1515303
  • Ortega F, Fernandez W, Santa JF, et al. Effects of tool shoulder geometry on mechanical properties and microstructure of friction-stir welded joints of AA5083-0 aluminium alloys. JMES. 2020;14(4):7507–7519. doi: 10.15282/jmes.14.4.2020.17.0591
  • Hattingh DG, Blignault C, Van Niekerk TI, et al. Characterization of the influences of FSW tool geometry on welding forces and weld tensile strength using an instrumented tool. J Mater Proc Technol. 2008;203(1–3):46–57. doi: 10.1016/j.jmatprotec.2007.10.028
  • Marzbanrad J, Akbari M, Asadi P, et al. Characterization of the influence of tool pin profile on microstructural and mechanical properties of friction stir welding. Metall Mater Trans B. 2014;45(5):1887–1894. doi: 10.1007/s11663-014-0089-9
  • El-Sayed MM, Shash AY, Abd Rabou M. Influence of the welding speeds and changing the tool pin profiles on the friction stir welded AA5083-O joints. J Weld Joining. 2017;35(3):44–51. doi: 10.5781/JWJ.2017.35.3.7
  • Shojaeefard MH, Khalkhali A, Akbari M, et al. Investigation of friction stir welding tool parameters using FEM and neural network. Proc Inst Mech Eng., Part L. 2015;229(3):209–217. doi: 10.1177/1464420713509075
  • Tahar HA, Zaharuddin MFA, Sharif S, et al. Effect of tool pin profile on friction stir welding of AA5083 aluminium alloy. AIP Conf. Proc. 2020:2291. doi: 10.1063/5.0031026
  • Amini S, Amiri MR, Barani A. Investigation of the effect of tool geometry on friction stir welding of 5083-O aluminium alloy. Int J Adv Manuf Technol. 2015;76(1–4):255–261. doi: 10.1007/s00170-014-6277-6
  • Torzewski J, Grzelak K, Wachowski M, et al. Microstructure and low cycle fatigue properties of AA5083 H111 friction stir welded joint. Mater. 2020;13(10):2351. doi: 10.3390/Ma13102381
  • Kumar PS, Sastry CS, Devaraju A, et al. Effect of taper with threaded tool profile on mechanical and microstructural properties of friction stir welded 5083 aluminium alloy. IJRET. 2016;5(7):224–228. doi: 10.15623/ijret.2016.0507034
  • Sundaram NS, Murugan N. Tensile behaviour of friction stir welded AA5083-H321. J Mech Intell Manuf. 2011;2(1/2):85–98.
  • Palani K, Elanchezhian C, Ramnath BV, et al. Modelling and optimization of process parameters on tensile behaviour of FSWed AA5083-H321 aluminium alloys using D-optimal design. Adv Sci. 2018;10:1–6. doi: 10.1166/asem.2018.2172
  • Kumar RS, Rajasekaran T, Prasad VG. Prediction of optimum welding parameters for friction stir welding of aluminium alloy AA5083 using response surface method. IOP Conf Ser: Mater Sci Eng. 2020;912(3):032030. doi: 10.1088/1757-899X/912/3/032030
  • Akinlabi ET, Andrews A, Akinlabi SA. Effects of processing parameters on corrosion properties of dissimilar friction stir welds of aluminium and copper. Trans Nonferrous Met Soc China. 2014;24(5):1323–1330. doi: 10.1016/S1003-6326(14)63195-2
  • Almomani M, Hassan AM, Qasim T, et al. Effects of process parameters on the corrosion rate of friction stir welded aluminium SiC-Gr hybrid composites. The Int J Corros Proc and Corros Con. 2013;48(5):346–353. doi: 10.1179/1743278213Y.0000000083
  • Verma J, Taiwade RV, Sapate SG, et al. Evaluation of microstructure, mechanical properties and corrosion resistance of friction stir welded aluminium and magnesium dissimilar alloys. J Materi Eng Perform. 2017;26(10):4738–4747. doi: 10.1007/s11665-017-2877-2
  • Seo B, Song KH, Park K. Corrosion properties of dissimilar friction stir welded 6061 aluminium and HT590 steel. Met Mater Int. 2018;24(6):1232–1240. doi: 10.1007/s12540-018-0135-2
  • D’Urso G, Giardini C, Lorenzi S, et al. The influence of process parameters and corrosion behaviour of the friction stir welded aluminium joints. Proc Eng. 2017;207:591–596. doi: 10.1016/j.proeng.2017.10.1026
  • Bocchi S, Cabrini M, D’Urso G, et al. The influence of process parameters on mechanical properties and corrosion behaviour of friction stir welded aluminium joints. J Manuf Proc. 2018;35:1–15. doi: 10.1016/j.jmapro.2018.07.012
  • Laska A, Szkodo M, Koszelow D, et al. Effect of process parameters on strength and corrosion resistance of friction stir welded AA6082. Met. 2022;12(2):192. doi: 10.3390/met12020192
  • Rambabu G, Naik DB, Rao CV, et al. Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminium alloy joints. Def Technol. 2015;11(4):330–337. doi: 10.1016/j.dt.2015.05.003
  • Jariyaboon M, Davenport AJ, Ambat R, et al. The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024-T351. Corros Sci. 2007;49(2):877–909. doi: 10.1016/j.corsci.2006.05.038
  • Ramesh NR, Kumar VS. Experimental erosion-corrosion analysis of friction stir welding of AA 5083 and AA 6061 for Sub-sea applications. Appl Ocean Res. 2020;98:102121. doi: 10.1016/j.apor.2020.102121
  • Bousquet E, Poulon-Quintin A, Puiggali M, et al. Relationship between microstructure, microhardness, and corrosion sensitivity of an AA 2024-T3 friction stir welded joint. Corros Sci. 2011;53(9):3026–3034. doi: 10.1016/j.corsci.2011.05.049
  • Grover HS, Chawla V, Brar GS. Comparing mechanical and corrosion behaviour of TIG and amp; FSW weldments of AA5083-H321. Indian J Sci Technol. 2017;10(45):1–10. doi: 10.17485/ijst/2017/v10i45/113537
  • Wahyudianto FA, Yadie E. Corrosion behavior of AA5083 friction stirred metal welds joint inside 3,5% NaCl solution. Prosiding SNTTM. 2017;16:77–80.
  • Duda EA, da S, Soares S, et al. An investigation on galvanic corrosion in friction stir-welded AA 5083 aluminium alloy. Tecnol Metal Mater Min. 2022;19:e2751. doi: 10.4322/2176-1523.20222751
  • Saravanakumar R, Rajasekaran T, Pandey C, et al. Influence of tool probe profiles on the microstructure and mechanical properties of underwater friction stir welded AA5083 material. J Materi Eng and Perform. 2022;31(10):8433–8450. doi: 10.1007/s11665-022-06822-4
  • Amini K, Gharavi F. Influence of welding speed on corrosion behaviour of friction stir welded AA5086 aluminium alloy. J Cent South Univ. 2016;23(6):1301–1311. doi: 10.1007/s11771-016-3180-3
  • Vilaça P, Pépe N, Quintino L. Metallurgical and corrosion features of friction stir welding of AA5083. Weld World. 2006;50(9–10):55–64. doi: 10.1007/BF03263445
  • Zucchi F, Trabanelli G, Grassi V. Pitting and stress corrosion cracking resistance of friction stir welded AA 5083. Mater Corros. 2001;52(11):853–859. doi: 10.1002/1521-4176(200111)52:11<853::AID-MACO853>3.0.CO;2-1
  • Yousif A, Elsoeudy R, Attia G. Corrosion behaviour of friction stir welded 5083 aluminium alloy. Research Gate. 2007:1–14.
  • Lim YB, Lee KJ. Microtexture and microstructural evolution of friction stir welded AA5052-H32 joints. J Weld Joining. 2019;37(2):35–40. doi: 10.5781/JWJ.2019.37.2.6
  • Carneiro I, Simoes S. Recent advance in EBSD characterisation of metals. Met. 2020;10(8):1097. doi: 10.3390/met10081097
  • Neelamegam V, Govindasamy Bhavani B, Muthukrishnan M, et al. Investigation on corrosion behaviour of cryogenically treated friction stir welded AA5083. Mech. 2020;26(5):442–449. doi: 10.5755/j01.mech.26.5.23571

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.